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ABSTRACT 

This work explores the opportunities and limitations of the Cropland Roadside 

Survey in Dane County, Wisconsin. The Cropland Roadside Survey is a transect crop and 

tillage survey developed by the Conservation Information and Technology Center and 

conducted by many counties throughout the United States to monitor and assess the 

adoption of conservation tillage practices. The Dane County Land and Water Resources 

Department has conducted this survey since 1994, providing a vast historic dataset on crop 

and tillage practice throughout the county. Presently only annual summaries of crop and 

tillage practice are produced from this dataset. The objective of this work is therefore to 

expand the utility and value of these Cropland Roadside Survey data. This is achieved 

through an assessment of survey design and data structure to determine the potential for 

new data products from existing data and to provide recommendations to improve survey 

design. An examination of alternative survey methods and technologies is presented. To 

further improve the utility of the dataset, ancillary data such as soil and field physical are 

added to survey data through geospatial analysis.   

Results from this work demonstrate the versatility and depth of information that can 

be extracted from the Cropland Roadside Survey datasets. Analysis of survey data 

demonstrates an increased adoption of both crop residue cover and no-tillage practices, 

both important components of conservation tillage. Beyond crop and tillage trends, crop 

rotation data, crop tenure, and double cropping information was generated from the 

original survey data. The addition of soil characteristics, particularly the Highly Erodible 

Lands status of soils, demonstrated the ability of Cropland Roadside Survey data to be 
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used to explore the relationship between agricultural practices, conservation adoption, and 

field level physical phenomena. 

Key challenges in expanding the utility of the Cropland Roadside Survey are the lack 

of metrics on measurement accuracy for crop residue cover estimates and the need to 

increase the efficiency of data collection. Dressing et al. (2017) provides recommendations 

on conducting in-situ accuracy assessments of crop residue cover estimates at the cost of 

increased labor and time, but utilization of imagery and novel technology platforms offer 

the greatest opportunity for improving efficiency and accuracy of the Cropland Roadside 

Survey. Improvements in efficiency and accuracy creates substantial value from Cropland 

Roadside Survey data, as it allows for comparison and aggregation of data between 

counties and regions, improves responsiveness, and enables use of the data for more 

advanced statistical analysis. Additionally, validation of Cropland Roadside Survey data 

could provide a robust dataset for improving existing remote sensing platforms for 

monitoring crop residue cover. This integration would help bridge the gap between 

regional remote sensing products and the need for high quality, localized data across 

multiple spatial scales.  
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CHAPTER 1 

A Critical Review of County Transect Surveys for Residue Estimates 

Abstract 

 The Cropland Roadside Survey is a county-scale crop and tillage survey developed to 

monitor adoption of conservation tillage practices throughout the United States. The survey 

was in active use by the Conservation Technology and Information Center (CTIC) from the 

early 1980s to 2004. Many counties throughout the United States still conduct the Cropland 

Roadside Survey, offering a large, underutilized, database on crop and tillage practices 

during the past three decades. This work presents a detailed examination and evaluation of 

the Cropland Roadside Survey and its application in Dane County, Wisconsin. Remote 

sensing alternatives for collecting crop and tillage data are also considered, along with 

opportunities to improve the Cropland Roadside Survey with new technologies. An analysis 

of the original survey methodology and the statistical foundations of the survey revealed the 

lack of a robust measurement accuracy assessment. This creates uncertainty in comparisons 

and aggregations of survey data across counties. A method for accuracy assessment is 

identified along with an examination of unmanned aerial systems (UAS) and computer 

assisted technologies to aid in the rapid collection and assessment of crop and tillage survey 

data. The technologies of remote sensing, UAS platforms, and image processing augment 

rather than replace the Cropland Roadside Survey and there is still the need for systematic 

ground surveys.  
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Crop Residue and Tillage Data Collection 

The conservation of soil has been a long-standing issue in the United States’ 

agricultural production. The Dust Bowl of the 1930s prompted the creation of the Soil 

Erosion Service within the U.S. Department of the Interior, which was a few years later 

incorporated into the Soil Conservation Service under the U.S. Department of Agriculture. 

Soil conservation again became a prominent national policy topic with the passage of the 

Food Security Act in 1985 that included specific programs for the conservation of soil and 

water resources (McGranahan et al., 2013); however, some Midwestern states such as 

Illinois in 1980 and Wisconsin in 1982 had adopted “T-by-2000” programs earlier in the 

decade. These past efforts to ensure food security and to conserve soil and water resources 

are echoed in more recent years by calls for sustainable food and water resources, both 

highly dependent on the sustainable conservation of soil as a natural resource (Keesstra et 

al., 2016). 

As initiatives focused on conserving soil resources proliferated, the need arose to 

characterize and quantify the impact these programs had on farmer’s adoption of 

conservation agriculture practices. The most common and well-established methods for 

gathering cropping practice and crop data were through self-reporting mail questionnaires 

and in-person interviews, with the National Agriculture Statistics Service (NASS) and 

Economic Research Service (ERS) spearheading such efforts (USDA ERS, 2020). The 

Conservation Technology Information Center (CTIC) at Purdue was established in 1982 

with the purpose of recording and analyzing adoption of conservation tillage and crop 

practices on a county-by-county basis at a national scale. The creation of the CTIC 
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represented a major step in standardizing residue and tillage data collection and making this 

information widely available through the Crop Residue Management survey (CRM). 

Between 1983 and 1998, CTIC collected residue and tillage data by crop through best 

estimates made after consultation with local and regional partners (Hill, 1996; Baker, 2011). 

In 1994, the Soil Conservation Service was renamed the Natural Resources Conservation 

Service (NRCS) to reflect the broader scope of this agency’s work and programs beyond soil 

conservation. 

The 1990s saw significant improvement in the collection of crop residue and tillage 

information. The USDA implemented the Agricultural Resource Management Survey 

(ARMS), administered by NASS and provides multi-county scale crop and tillage data 

(USDA NASS, 2020). Meanwhile the CTIC, in conjunction with local and regional partners, 

developed an in-situ field survey to acquire crop residue and tillage data. The Cropland 

Roadside Survey Method of Collecting Residue and Tillage Data (Hill, 1996) represents a 

formalized presentation of a transect survey design developed by Hill and others since the 

late 1980s.  Dane County in Wisconsin, the primary subject of this review, uses the term 

“Crop and Tillage Survey” – or CT survey, while other states such as Minnesota refer to this 

survey as the “Tillage Transect Survey” or TTS to describe their implementation of the 

Cropland Roadside Survey Method. The term most commonly found in the literature is that 

of Tillage Transect Survey (Gowda et al., 2001; Thoma et al., 2004; Zheng et al., 2014; 

Dressing et al., 2017). This chapter will use Cropland Roadside Survey throughout to avoid 

any ambiguity about which specific method is being employed, especially to avoid 



4 
 

confusion with the similarly named line-transect method measuring crop residue values in 

fields (Morrison et al., 1993).  

The Cropland Roadside Survey approach was widely adopted in the early-to-mid 

1990s by county conservation offices across the Midwest, with Minnesota adopting the 

method in 1989, Indiana, Ohio, and Iowa since at least 1990, and Illinois in 1994 (Illinois 

Agric. Dept., 2018; Fisher and Moore, 2008). The Cropland Roadside Survey method gained 

national application when the CTIC utilized it for CRM survey data collection in 17 states 

for 2000, 2002, and 2004 (Revised Cropland Survey, 2002; Baker, 2011). Wisconsin 

adopted the Cropland Roadside Survey method on a voluntary county-by-county basis in 

1994. In 1998, the Wisconsin Department of Agriculture, Trade and Consumer Protection 

(DATCP) recommended statewide adoption of this survey for generating the T-By-2000 

Report (DATCP, 1999). Although many counties throughout the United States participated 

in the CTIC’s CRM survey and continued to collect data using the Cropland Roadside 

Survey for their own use, access to the vast majority of these data is restricted to individual 

water and soil conservation districts and counties. Typically, data are used internally and/or 

compiled for the CTIC’s CRM survey reports. The data maintained by CTIC as part of the 

CRM survey are propriety and available in aggregated form at the HUC 8 watershed scale. 

Nationwide data collection for the CRM survey ended in 2004 when federal funding and 

NRCS involvement ended (CTIC, 2020).  

While some states and local governments have continued to gather crop and tillage 

data through field work like the Roadside Cropland Survey, there has been a pivot to 

remotely sensed data acquisition. Since 2008, the NASS’ Crop Data Layer is developed by 

pma1
Highlight
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classifying Landsat satellite imagery with data layers at the national scale available. The 

CTIC has initiated the Operational Tillage Information System, a remote sensing-based 

program for classification of crop residues (Hagen et al., 2016; Hagen et al., 2020). These 

new approaches will be discussed later in this chapter. 

Roadside Cropland Survey Methodology 

and the Dane County Crop and Tillage Survey 

Dane County adopted the Crop and Tillage Survey based on the Cropland Roadside 

Survey in 1994 in cooperation with P. Hill and the CTIC to assess the effectiveness of soil 

conservation efforts. Administered by the county’s Land and Water Resources Department 

(LWR), the survey has been conducted annually since 1994 with a 2-year gap from 2008 to 

2009. The resulting crop and tillage survey dataset represents over 23 years of data on 

agricultural practices collected at the field level across Dane County.  

Establishing the roadside survey path, or transect, involved mapping out a driving 

route through the county that was representative of the county’s agricultural soils and 

conditions, while avoiding urban areas and heavily trafficked roads. This route was 

recommended to be determined by someone unfamiliar with conservation and cropping 

efforts in the area of interest to avoid biasing the route. At half-mile intervals along this 

route, the vehicle is to stop and collect observations on either side of the road if an 

agricultural field is present. These sample points were denoted by their stop number and 

their position on the left or right side of the transect path. Determination of these routes 

involved the use of soil survey map hard copies and recording of the route on hard copies, 

with detailed notes of the sampling sites and odometer readings used to determine the 

pma1
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correct sampling point along the transect for subsequent survey years. In 1996, a GPS 

receiver was used to attribute GPS coordinates to each survey stopping points, with in-field 

observation points assumed to be 10 to 15 feet interior of the field’s edge and beyond end 

rows. Observations were made at each point by stopping the vehicle along the route to get a 

clear and steady view of the field.  

 The Dane County Roadside Cropland Survey maintained the same sampling points 

every year (Fig. 1) and the same person within the county conservation staff has conducted 

the survey for every data point collected. Although Dane County utilizes the same sample 

points year-to-year, some jurisdictions utilizing the Cropland Roadside Survey method forgo 

this step and instead record the data as they pass by the sample point (Hagen et al., 2016). 

The Dane County database has the potential to provide consistent observations of 

agricultural land use and tillage practices from one year to the next for each sampling point 

along the transect given the manner in which the data have been collected. The transect 

survey is conducted in the spring of every year, after planting and initial crop growth but 

before canopy closure. Fields are revisited if no crop is observed during the first visit. 

The initial design for the Roadside Cropland Transect Survey collected information on 

the current crop, the previous year’s crop (inferred from residues if any), tillage system, 

residue cover, and the presence or absence of ephemeral erosion (Fig. 2). Initially the 

number of crop categories in the Dane County survey was limited to eight but was expanded 

in 2010 with over 65 distinct crop descriptors recorded in the survey. Crop residue cover 

was recorded in five broad categories and the best estimate of tillage system is recorded, 

pma1
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Figure 1. Map of Dane County, Wisconsin showing the route of the Cropland  

    Roadside Survey. Each red dot marks an observation site. The survey  

    starts in the northwest corner of the county every year (Dane County  

    Land and Water Resources 2018). 
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Figure 2. Original information collected annually in the Cropland Roadside Survey.  

    Includes present crop at time of survey, previous crop determined from  

    residue, current tillage practice, residue cover, presence of ephemeral erosion,  

    and P-factor. Other information that describes a particular field was attributed  

    during the initial survey setup (Hill, 1996).  
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where tillage systems are attributed according the CTIC’s conservation, reduced, and 

conventional tillage category definitions (Fig. 2). However, tillage systems are difficult to 

determine from surface disturbance alone, since practices such as disking, multiple tillage 

passes, and combinations of various implement attachments can create a similar degree of 

surface soil disturbance. Therefore, in practice, highly disturbed and inverted soils are 

described as conventional, direct evidence of the ridge till can be recorded as such, and no-

till conditions are often distinctly identifiable by the lack of any soil surface disturbance in 

seeded fields. Additional information on each sample site was described during the initial 

transect setup in 1994 including factors for use with the Universal Soil Loss Equation, 

watershed, and topographical characteristics.  

The primary statistical product of the Cropland Roadside Survey is an estimate of total 

cropping acres in a given crop and crop residue cover. These estimates are generated by 

taking a simple proportional count of observations for a given crop and crop residue cover 

class. For example, if there are 600 total observations of corn (Zea mays L.) from the 

roadside survey and 287 of these observations are classified as crop residue class 3 (31 to 

50% crop residue) in any particular year, the percent of corn acres in Dane County with this 

crop residue class can be estimated by dividing these two values (e.g., 287/600 x 100 = 

47.8%). Further, the number of acres of corn with this crop residue class in the county can 

be estimated by taking the number of acres in corn from NASS data (13,000 acres) and 

multiplying by the percentage (e.g., 13,000 total acres in corn x 47.8% = 6,214 corn acres 

with crop residue cover class 3 in Dane County). These estimate summaries are recorded 

over time, providing yearly snapshots allowing county conservationists to assess adoption of 
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conservation practices (Hill, 1996; Baker, 2011).  It is important to note that the definition of 

tillage systems includes estimates of crop residue cover but also includes direct observations 

of soil disturbance (CTIC, 2020). In this way tillage systems may be compared to crop 

residue cover, such as how often no-till results in a crop residue cover greater than 50%. For 

counties participating in the CRM survey estimates of acreage of crop type by crop residue 

cover estimates were submitted to the CTIC for compilation. Additional attributes for each 

field can be included, such as soil loss tolerance (“T-Factor”) and field slope. The 

integration of further ancillary data expands the potential application and usefulness of the 

Cropland Roadside Survey.  

Statistical Foundation and Reliability of the Cropland Roadside Survey 

The Cropland Roadside Survey was designed to provide statistical estimates on crop 

residue and descriptive statistics of crop and tillage practices at the county scale. Hill (1996) 

emphasizes the desire for the highest level of confidence (at least a 90% confidence interval) 

for the survey design with the most important attribute being crop residue. In order to 

provide estimates with the appropriate statistical power, the minimum number of sample 

points required by the Cropland Roadside Survey was calculated based on the assumption of 

a multinomial population (Hill 1996). In this methodology, an increase in the number of 

categories would require an increase in the number of samples required to maintain the 

desired statistical power, thereby putting a practical upper limit on the number of different 

categories the survey can consider with a high confidence level (Dressing et al., 2017). This 

can be problematic when a survey is first developed, because the survey team must 

determine if they will spend additional time and resources to establish more sample points 
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for future new or novel evaluation criteria. An expansion of data categories occurred for 

both the Dane County Cropland Roadside Survey and the Minnesota statewide initiative, 

where the need for more classification categories was recognized for crops and tillage 

systems, along with the addition of ancillary data such as watershed designations, soil 

characteristics, and the addition of cover crop monitoring (Fisher and Moore, 2008). 

Dressing et al.  (2017) noted the need to add an additional buffer to survey sample size for 

anticipated loss of sample points through urban sprawl and conversion of agricultural sites. 

These two situations, the later need for additional categories and the loss of sample sites due 

to land conversion, highlight the importance of careful survey design to allow for 

adaptability when the intent is to collect information for long periods of time. 

While these considerations of sample size address the matter of variance in the 

estimates, there is no provision within the Cropland Roadside Survey to provide a measure 

of accuracy or reliability. In the introduction of the method, Hill (1996) describes the 

transect survey as providing “90% or more confidence in the accuracy of the results” and 

equates this to a high level of reliability, with accuracy and reliability in this instance being 

used colloquially. Unfortunately, some documents based on this methodology repeat this 

provision with the assurance that the Cropland Tillage Survey provides a 90% level of 

accuracy in residue estimates (DATCP, 1999; Revised Cropland Survey, 2002). This may 

lead to confusion on the actual statistical strengths and limitations of the survey design. An 

examination of these strengths and weaknesses follows below, along with recommendations 

for improvement.  
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The primary source of error in the survey design is found in visual estimates of crop 

residue. This method of estimating crop residue is inherently subjective and depends on the 

individual observer to make accurate estimates. The survey design calls for periodic line-

transect measurements of crop residue in field to create a visual reference for roadside 

estimates to minimize measurement error. However, there is no procedure for recording 

these self-evaluations of accuracy in the database. If these data are collected, they may 

provide a basis to evaluate the accuracy of a specific observer(s) associated with a recorded 

transect. 

An assessment of accuracy in the Cropland Roadside Survey estimates would allow for 

statistical comparisons between years and between counties. This is particularly important 

when transect surveys are conducted by different observers between years. Without an 

accuracy assessment, it is not possible to statistically quantify if changes between one year 

and the next represent an actual change in crop and tillage practice or are the result of 

systematic measurement error if different observers collected data different years. Without a 

method to reduce this uncertainty, the Cropland Roadside Survey’s most meaningful 

products are qualitative trends and frequency estimates. This is not to say the estimates 

provided by the Cropland Roadside Survey do not have a practical value, as they inform the 

expert knowledge of county conservationists and provide a unique perspective on 

agricultural practice within a county. However, the current uncertainty present in the 

Cropland Roadside Survey limits statistical comparison between counties or at state and 

regional scales. The reliability of the dataset is highly dependent on having the same 

observers carry out the operation each year. The development of an accuracy assessment 
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would reduce this dependency and allow for description of anticipated variation between 

observers. Researchers conducting Minnesota’s transect tillage survey in 2007 noted that 

potential inconsistencies in reported accuracy and protocol adherence made quality 

assurance of county-level summaries difficult and resulted in some estimates that stretched 

credibility, representing either remarkable adoption of conservation practice or a 

discrepancy in the reliability of data collection between counties (Fisher and Moore, 2008). 

Independent assessments of the Cropland Roadside Survey method are extremely 

limited within the published literature and internal assessments conducted by initiatives 

utilizing the survey have not been made readily available to the public. Thoma et al. (2004) 

used the line-transect method of measuring in-situ crop residues to assess the accuracy of 

Cropland Roadside Survey estimates and found a 49% level of accuracy when residue 

values were binned in five groups (0 to 15, 16 to 30, 31 to 50, 51 to 75, and 75 to 100% crop 

residue cover). More accurate estimates were developed with fewer categories, with the 

greatest level of accuracy being 74% with two residue categories (0 to 30 and 31 to 100% 

crop residue cover). Beeson et al. (2016) similarly compared estimates from the Cropland 

Roadside Survey method to line-transect estimates of crop residue cover and found an 

overall accuracy of 74% when using two crop residue cover categories (0 to 30 and 31 to 

100%). In a project report for the Canadian SWEEP (Soil and Water Environmental 

Enhancement Program) by Robert and Coleman (1987), a similar transect survey design to 

the Cropland Roadside Survey approach was described to provide residue estimate 

validations for a subset of their surveyed fields, with a reported overall accuracy of 96% 

using a cross tabulation of in-situ line-transect crop residue estimates with visual estimates. 
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The cross-tabulation approach used by Robert and Coleman (1987) was equivalent to the 

method employed by Thoma et al. (2004) and Beeson et al. (2016). Dressing et al. (2017) 

noted that in the Thoma et al. (2004) and Robert and Coleman (1987) assessments where the 

line-transect method was used to validate visual estimates, there was a general tendency of 

the visual estimates to overestimate crop residue for low crop residue categories (i.e., < 

30%) and underestimate crop residue for higher crop residue categories (i.e., > 50%).  This 

pattern of error in estimation was also reported by Beeson et al. (2016) in their assessment.   

These findings suggest there may be a systematic bias in the Cropland Roadside 

Survey, but more rigorous evaluations are required to provide a quantification and possible 

correction for this systematic bias. In order to accomplish this, Dressing et al. (2017) 

provides validation procedures that allow for robust accuracy assessments using sample 

error matrices and unbiased estimators based on marginal proportions of the sample error 

matrix. Dressing et al. (2017) note that the validation procedures only function to model the 

accuracy of a given individual in a given year; however, this presents the opportunity for 

determining empirically the nominal accuracy (bias and variance) of visual crop residue 

estimates in a Cropland Roadside Survey. An expected conservative estimate of accuracy 

would necessitate that training and the method used be consistent across survey teams for 

comparisons, but it also would provide a structure for training and evaluating the 

performance of survey teams in a more robust fashion than the in-field visual assessment 

method originally proposed. Conservative estimates of accuracy would also help in data 

comparisons of decades of archival data across counties and states that have conducted these 

surveys. 
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Other sources of systematic bias within a survey design include the roadside position 

for making observations and the influence of “binning” crop residue estimates into 

categories with residue ranges covering intervals of 15 to 25%. The roadside position 

presents issues at oblique viewing angles and limited sight lines for determining crop residue 

level (Thoma et al., 2004; Beeson et al., 2016). The binning of crop residue estimates 

converts a population of observations with a continuous distribution into a multimodal 

distribution. This introduces a bias toward the middle value of each bin and, therefore, the 

number of bins used to represent the data increases or decreases the certainty that can be 

attributed to that estimate (Thoma et al., 2004; Hagen et al., 2016; Dressing et al., 2017).  

The trade-off in the roadside position is ease of access, which largely avoids the need to 

obtain field access permission from the field owner/operator except in cases of spot-

checking estimates with in-field line transect estimates. Additionally, the roadside 

observations allow for a greater rate of data collection compared to infield measurements 

and a high level of continuity in sampling position from year-to-year. In general, the 

Cropland Roadside Survey design process provides careful consideration for survey route 

planning and consistent methodology for gathering data spatially along the transect route 

with inclusion and exclusion criteria for field observations.  

The overall effect of these two methodological sources of potential bias is presently 

unknown, especially because accuracy and precision of residue estimates may not be 

consistent across all residue values within a bin, with Thoma et al. (2004) remarking that the 

greatest uncertainty in visual estimates was found around 30% crop residue cover, an 

important threshold for discriminating conservation tillage practice.  
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In practical application, expert knowledge and familiarity of the region may allow a 

county conservationist to use findings within a given year or between years to affirm a 

general trend in crop and tillage practices, and to call out plausible patterns. Given that the 

statistical product of the estimates still maintains a level of precision, changes between years 

can still be noted within a dataset captured by a given observer. In its capacity to provide a 

“snapshot” of cropping and tillage practices, the Cropland Roadside Survey serves a 

practical purpose and gives more credibility to the expert opinion and experience of county 

personnel beyond anecdotal evidence. With the implementation of a validation procedure, 

Cropland Roadside Survey results may be used to augment quantitative models that seek to 

describe the impact of statewide or federal initiatives and programs to conserve farmland 

and reduce erosion. 

Application of Satellite Remote Sensing 

A leading alternative to transect surveys like the Cropland Roadside Survey is the use 

of satellite remote sensing to estimate crop residue covers over large areas and at regional 

scales. Advantages of satellite remote sensing platforms include rapid and objective data 

acquisition over large spatial extents providing continuous statistical surfaces of crop residue 

estimates (Zheng et al., 2014). Satellite remote sensing technologies for crop residue 

estimation gained significant attention in the early 2000s with studies exploring the 

capabilities of satellite platforms for crop residue estimates at the field and local level 

(Gowda et al., 2001; Thoma et al., 2004; Daughtry et al., 2005; Daughtry et al., 2006). More 

recently, there have been a number of studies utilizing remote sensing technologies for 

regional and broad scale crop residue monitoring (Zheng et al., 2013a; Zheng et al., 2013b; 
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Hagen et al., 2016; Azzari et al., 2019; Beeson et al., 2020; Hagen et al., 2020). Presently, 

the most comprehensive efforts to map crop residue cover at broad scales have been 

undertaken by Hagen et al. (2016), Azzari et al. (2019), Beeson et al. (2020), and Hagen et 

al. (2020). 

Hagen et al. (2016) and Hagen et al. (2020) describe a large-scale annual tillage 

mapping initiative utilizing satellite remote sensing with their Operational Tillage 

Information System (OpTIS); OpTIS is designed to provide crop residue cover estimates 

from a county-to-multistate scale. Thus far, they produced estimates for 645 counties in the 

American Corn Belt using a mix of MODIS and Landsat datasets (Hagen et al., 2016; Hagen 

et al., 2020). A comparison of OpTIS estimates to estimates from a modified Cropland 

Roadside Survey found a Pearson correlation coefficient of 0.683, with a statistically 

significant (p < 0.05) R2 value of 0.467 (Hagen et al., 2020). Modifications to the Cropland 

Roadside Survey used to generate estimates made use of roadside imagery to serve as a 

visual record and for quality control. The difference between OpTIS and survey estimates 

varied greatly, from less than 10% to greater than 80%, but found an agreement of 42.3% 

between the two estimates and an overall weighted kappa statistic of 0.67 (Hagen et al., 

2020). It is important to note that comparisons between OpTIS estimates and Cropland 

Roadside Survey estimates do not have accuracy metrics and therefore these comparisons 

provide a descriptive quantification of agreement and not a robust evaluation of accuracy.  

The difficulty in validating large-scale estimates, from multiple states to nationwide, 

are demonstrated by Azzari et al. (2019) and Beeson et al. (2020). Beeson et al. (2020) 

carried out a multistate regional analysis of crop residue cover in the Midwest that parallels 
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the analysis of the OpTIS project. In this study, the authors compared their regional 

estimates spanning 10 years from 2007 to 2016 to Agricultural Resource Management  

Survey (ARMS) results and reported an accuracy of 64 to 74% when remotely sensed 

estimates of crop residue cover were compared to the ARMS estimates. Azzari et al. (2019) 

produced estimates for crop residue cover in soybean (Glycine max.) fields across the 

Midwest from 2006 to 2016 using a mix of Landsat archive imagery and Sentinel-1 radar 

data. For validation Azzari et al. (2019) relied on producer surveys from throughout the 

region of interest and had a best reported accuracy of 75 to 79%. In both cases, the reference 

data available, either locally or at larger spatial extents, are limited and often fragmented 

both spatially and temporally. In evaluating their results, Beeson et al. (2020) cautions that 

comparisons using historical survey data can be problematic and should “be regarded as a 

rough guide at best.” This sentiment is echoed by others, where the lack of reliable ground 

data for validation presents a particular challenge to broad-scale classification of crop 

residue cover (De Paul, 2012; Zheng et al., 2014; Azzari et al., 2019; Hagen et al., 2020).  

When validated against local scale in-situ line-transect methods, satellite remote 

sensing estimates of crop residue ranged in accuracy from 19 to 90% and, as observed in the 

Cropland Transect Survey, reducing the number of categories greatly increased the accuracy 

of most models (Table 1). Azzari et al. (2019) notes that in the cases of Zheng et al. (2012) 

and Beeson et al (2016) clustered training data may result in an over estimation of accuracy. 

The ability of crop residue cover model to be widely applied is constrained by the training 

and validation data available, where locally develop models perform poorly when applied to  
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Table 1. Satellite remote sensing classification accuracies of crop residue cover estimates  

   validated by line-transect method. 

 

Accuracies vs. 

line transect 

method 

 

Number of categories (residue cover) 

 

Reference 

90 to 91% 3 (< 30, 30 to 70, >70%) Zheng et al. (2012) 

69 to 79% 3 (< 30, 30 to 70, >70%) Zheng et al. (2013b) 

57 to 65% 4 (<15, 15 to 30, 30 to 60, >60%)  

Daughtry et al. 

(2006) 

 

66 to 68% 3 (<15, 15 to 30, >30%) 

80 to 82% 2 (<30 and >30%) 

59 to 73% 2 (0 to 30, 31 to 100%)  

Thoma et al. (2004) 61 to 71%  3 (0 to 30, 31 to 75, 76 to 100%) 

19 to 40% 5 (0 to 15, 16 to 30, 31 to 50, 51 to 75, 76 to 100%) 

66 to 89% 2 (0 to 30, 31 to 100%) Beeson et al. (2016) 
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broader regions.  These comparisons focus on crop residue cover, although some remote 

sensing studies report these values as estimates of tillage practice, inferred from crop residue 

cover. This is different from the results of ground level cropland roadside surveys, which 

can infer tillage practice directly from observations of soil disturbance in addition to crop 

residue cover.  

Challenges that contribute to a wide range of accuracy in remotely sensed estimates of 

crop residue cover are related to the still developing nature of remote sensing (Zheng et al., 

2014), while atmospheric conditions, sensor and platform limitations, and ground conditions 

are additional complicating factors (Table 2).  Zheng et al. (2014) presents an excellent 

review of satellite remote sensing for crop residue cover applications. 

New satellite platforms offer a promising opportunity to improve on many of these 

challenges, with the Sentinel-1 and Sentinel-2 platforms providing a greatly improved 

spectral and temporal resolution that promises to increase the reliability of satellite remote 

sensing image capture, and a greater quality of remotely sensed crop and crop residue cover 

estimates (Zheng et al., 2014; Begue et al., 2018; Beeson et al., 2020; Hagen et al., 2020). 

However, development of these new technologies will still need to be paired with higher 

quality ground data, as any improvement in data quality for a model is still limited by the 

absence of an equally robust dataset for calibration and validation. Improvements in these 

supporting ground-level datasets would lead to even greater accuracy in regional crop 

residue cover models (Zheng et al., 2014; Azzari et al., 2019). 
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Table 2. Potential limitations for remotely sensed estimates of crop residue cover †. 

 

† 1Beeson et al. (2020); 2Begue et al. (2018); 3Zheng et al. (2014); 4De Paul (2012); 5Serbin 

et al. (2009); 6Thoma et al. (2004). 

 
  

Atmospheric effects Sensor and platform Ground conditions 

• Atmospheric3 

reflectance and 

interference 

• Cloud 

cover1,2,3,4,6 

• Long revisit times and 

timing issues with 

tillage1,3,4,6 

• Current sensors lack ideal 

spectral sensitivity3,4 

• By-pixel classification can 

under represent variability4 

• Vegetation, including 

crop canopy2,3,4,5,6 

• Variable residue 

signature over time4 

• Soil moisture 

content2,3,4,5,6 

• Soil physical 

characteristics3,4,5,6 
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Alternative Methods and Discussion 

There is an inherent tradeoff between generality and specificity in the spatial scale of 

models estimating crop residue cover. Identifying the appropriate scale and level of 

localized accuracy is important in determining which model of estimation is most suitable. 

The line transect method of in-field crop residue estimation provides a high degree of 

accuracy and precision, acting as a standard reference for other estimation methods 

(Morrison et al., 1993; Laamrani et al., 2017). However, the line transect method is limited 

in application to small spatial extends due to its time and labor costs. Roadside surveys 

provide a qualitative snapshot and data over a much larger spatial extent, but currently lacks 

validation to determine differences from different observers and other concerns discussed 

earlier. Increasing accuracy and precision in measurement would require additional steps 

and therefore require additional cost and time requirements. Satellite remote sensing 

addresses many of the shortcomings of these in-situ methods by covering vast areas of land 

quickly. Satellite remote sensing products, however, experience the inverse trade-off of the 

in-situ survey methods in that the larger the extent the more cost effective the methodology 

is, while achieving local level accuracy requires a far greater expenditure of resources. The 

fundamental challenge to satellite remote sensing is the need for accurate, localized, 

calibration and validation data. Thus, current methods in satellite remote sensing requires 

the type of rigorous field work that it is poised to replace (De Paul, 2012; Zheng et al., 

2014). To meet this need, Zheng et al. (2014) suggests that a validated version of the 

Cropland Roadside Survey could provide the necessary local datasets. Validating these 

methodologies would then enable more advanced satellite remote sensing estimates as well 
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as greatly increase the utility of the two decades of Cropland Roadside Survey data held 

across the country in county offices.  

Technological advancements in proximal remote sensing and unmanned aerial systems 

(UASs) may provide improvements in both collection and spatial coverage of ground truth 

data. The OpTIS project is a modified Cropland Roadside Survey procedure that 

incorporated the collection of pictures of current field conditions at the time of data 

collection (Hagen et al., 2020). These images allowed for multiple independent estimates of 

crop residue cover and provide an archive of imagery for comparison to field reports. This 

method provides a more objective means of quality assurance and allows for peer-review of 

individual field estimates. In a similar method, Pilger et al. (2020) obtained roadside images, 

except instead of relying on the observer to capture the image, cameras were mounted to the 

outside of the vehicle and images were automatically captured in motion. In both instances, 

crop residue cover is estimated visually at a later time. However, these images are still taken 

at the same oblique angle as the in-situ visual estimates, and so share potential sources of 

error in estimations (Pilger et al., 2020). Imagery taken orthogonally to the ground can be 

utilized to estimate crop residue cover with similar accuracy and precision as the line 

transect method using a grid intercept method (Laamrani et al., 2017).  In all cases, the 

imagery-based approach allows for estimates of crop residue cover to be determined at a 

later time by qualified personnel, providing more flexibility in the level of training and 

expertise required during the field campaign season. The method by Laamrani et al. (2017) 

would additionally provide the benefit of a very high degree of accuracy. However, to 

incorporate these orthogonal images in the cropland roadside survey the observer would 
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need to enter the field adding additional collection time and requiring permission in advance 

from the field owner/operator.  

Two studies (Kosmowski et al., 2017; Kavoosi et al., 2020) have explored the use of 

UASs to rapidly collect field scale imagery at the centimeter or greater resolution and then 

classified crop residue cover using segmentation (Kosmowski et al., 2017) or RGB indexes 

(Kavoosi et al., 2020). Comparison to line transect based estimates of crop and residue cover 

determined that these methods yielded results similar to satellite remotely sensed products; 

however, these images were taken on low-cost, consumer-grade cameras and UAS platforms 

and only provided RGB band imagery (Kosmowski et al., 2017; Kavoosi et al., 2020). 

Improved sensors or optimized classification methods may yield greater results, such as 

Laamrani et al. (2018) utilization of a script-based mobile app for automatic classification of 

crop residue coverage from orthogonal in-field imagery. Ding et al. (2020) utilized 

supervised SVM classification to estimate crop residue cover from UAS imagery with an 

overall accuracy of 98.1%. In addition, manual methods of visual estimation and grid 

intercept are applicable with UAS platforms as very high levels of image resolution can be 

maintained, up to and exceeding 0.5 cm (Kosmowski et al., 2017; Bansod et al., 2017).  

Another potential advantage of the UAS platforms for gathering field level ground-

truth data is that flight paths can be automated along pre-determined sampling paths, so that 

every field can be sampled at large spatial extent, and this sampling can be consistent from 

year-to-year utilizing precise GPS coordinates. This significantly reduces the likelihood of 

field mis-identification between survey years and allows for highly consistent data collection 

with an imagery archive for quality control. The pre-determined flight paths would also 



25 
 

allow field crews carrying out the Cropland Roadside Survey the ability to make fewer 

stops, while collecting a greater number of data points per stop.  

Conclusion and Recommendations 

Remote sensing can efficiently provide continuous data over large areas but requires a 

high degree of expertise and is lacking in widely available application, whereas the inverse 

is true of remote sensing products that are best suited for large-scale, multi-county to 

regional application. A county conservation team may require specific information for their 

county, and to do so with the flexibility to adapt and change as priorities and project areas 

change the locations of interest. For a watershed scale, the CRS may serve perfectly well, 

providing a relatively rapid, low overhead snapshot of that region compared to the high level 

of expertise necessary for remote sensing products and the spatial and temporal resolution 

limitations inherent in remote sensed data. For larger-scale applications such as the multi-

county or state level, remote sensing provides a very efficient methodology for tillage 

monitoring, particularly if initial start-up costs are offset by the production of multi-year 

datasets. However, neither of these practices are exclusive, as the validation needs of remote 

sensing approaches necessitate a localized field survey. Therefore, developing a uniform 

methodology to validate data collected by the Cropland Roadside Survey holds great 

promise to address the needs of both local conservation initiatives and state and regional 

actors. The CTICs effort to develop just such a system through its Crop Residue 

Management Survey and now its OpTIS initiative demonstrates that the key challenge lies in 

the lack of rapid field data acquisition that also delivers desirable levels of accuracy. New 

technologies such as UAS and roadside image capture platforms paired with automated 
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accurate classification of high resolution proximally sensed imagery are poised to reduce 

these critical labor barriers. In the interim, collection of Cropland Roadside Survey data with 

a suitable validation framework can provide meaningful information for local soil 

conservation efforts while providing an archive of ground reference data for the rapidly 

developing field of remote sensing.  
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CHAPTER 2 

Long-term Cropland Roadside Transect Survey Shows Increased 

Conservation Practice Adoption in Dane County, Wisconsin 

Abstract 

Conservation tillage has been an area of active research for it is potential to reduce soil 

loss through erosion, combat climate change, and improve food security. Conventionally 

conservation tillage is described as operations that leave greater than 30% crop residue cover 

in the field and includes no-tillage practice. This work utilizes annual crop and tillage data 

collected in Dane County, Wisconsin over a 22-year period using the Cropland Roadside 

Survey method. This same method was used by the Conservation Technology and 

Information Center (CTIC) in their national Crop Residue Management Survey. This work 

presents the relationships between crop type, crop residue cover, and no-tillage along with 

trends among these characteristics through time. We found an increase in conservation 

tillage practice from 1994 to 2017. This trend is apparent in increases of both crop residue 

cover levels and no-tillage practice. The most significant increase in no-tillage practice and 

crop residue cover levels was the result of changes in soybean (Glycine max.) tillage 

practices while corn (Zea mays L.) had a far more modest adoption of no-tillage and high 

crop residue cover. These results demonstrate the potential for the Cropland Roadside 

Survey to provide highly specific analysis of tillage and crop practices through time.  
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Introduction 

Conservation tillage practices are an important strategy in mitigating the impacts of 

climate change, preventing soil erosion, facilitating water conservation, and promoting soil 

health (Busari et al., 2015; Claassen et al., 2018). Conservation tillage as a descriptive term 

covers a wide range of practices (Reicosky and Allmaras, 2003; Reicosky, 2015). For the 

purpose of this study, the conventions established by the Conservation Technology 

Information Center (CTIC) defining tillage systems are used. In this context, conservation 

tillage is defined as when greater than 30% of crop residue cover is left in the field after 

tillage and includes no-tillage, ridge-tillage, and mulch-tillage practices, among others. 

Reduced tillage includes crop residue cover levels from 15 to 30% and conventional tillage 

leaves between 0 to 15% crop residue cover (CTIC, 2020).  

The adoption of conservation tillage has been an area of active research, with the most 

comprehensive tillage practice monitoring initiatives represented by the Agricultural 

Resource Management Survey (ARMS) of the Economic Research Service Agency within 

the U.S. Department of Agriculture, and the Crop Residue Management survey (CRM) 

conducted by the CTIC and local county governments. The CRM survey design is based on 

the Cropland Roadside Survey procedure developed by Hill (1996) and is discussed at 

length in Chapter 1. Despite a myriad of efforts to clearly understand the relationships and 

factors that drive adoption of conservation tillage practices over the past decades, there is 

not a strong consensus on what these factors are and the degree to which they contribute to 

adoption (Prokopy et al., 2019). Further, there is a high degree of variation in conservation 

tillage practices on a regional and crop basis (Lyon et al., 2004; Wade et al., 2015). While 
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there is extensive research into the drivers of conservation tillage and the benefits it can 

provide, there is a lack of quantitative data on field level conservation practices. Data from 

ARMS are collected in multi-year intervals and rely on producer perceptions of their own 

present and historic practices. These accounts are collected primarily through mailed 

surveys and practices are summarized at the regional scale. The lack of direct observation of 

field conditions by an expert and relying on producer perceptions in ARMS introduces 

additional sources of observer bias and is potentially complicated by the broad and often 

ambiguous understanding of what constitutes conservation tillage (Reicosky and Allmaras, 

2003; Reicosky, 2015). The lack of a predictive model for conservation tillage adoption and 

regional variability in conservation practices emphasizes the need and value of locally 

collected data on cropping and tillage practices.  

The Cropland Roadside Survey methodology practiced at the county level provides the 

most comprehensive and most widespread dataset currently available for field level crop and 

tillage practice, which can help determine practice adoption. These datasets provide an 

advantage over ARMS data by providing yearly snapshots and trends over time at the field 

level when conducted in consecutive years. However, data from Cropland Roadside Surveys 

are typically only analyzed as summary reports for individual years, or broadly aggregated 

into regional scale summaries of year-on-year occurrences of crop and tillage practices. 

After 2004, broad scale and regional data reporting was curtailed by a lack of funding and 

the CTIC’s national CRM initiative was largely abandoned. Although no longer supported 

on a national scale, many counties still carry out local surveys providing a vast but decen-

tralized and underutilized archive of field level agricultural practices.   
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The Cropland Roadside Survey method defines tillage systems by ranges of crop 

residue cover left after tillage, rather than the specific implements used. Although this 

approach is less specific, it has the added benefit of describing a measure that directly relates 

to surface erosion. However, visual observations cannot clearly identify below surface soil 

disturbance.  Therefore, in this study we consider crop residue cover and clear signs of soil 

disturbance to distinguish no-tillage as indicators of conservation tillage.  The objective of 

this work was to summarize a 22-year crop and tillage monitoring database derived from the 

Cropland Roadside Survey conducted by the Dane County Land and Water Conservation 

Department in Wisconsin since 1994.  A secondary objective was to provide a framework 

for exploration and analysis of these type of data. 

Methods 

Cropland Roadside Survey Design 

The Cropland Roadside Survey is a windshield transect survey developed in the 1990s 

and utilized by county conservation offices and by the CTIC’s Crop Residue Management 

Survey (Hill, 1996; Baker, 2011). Surveys were designed to sample agricultural fields at 

regular intervals along a predetermined road transect path. The transect path was designed to 

sample agricultural fields, and thus, avoided populated regions of the county and areas 

undergoing urban sprawl.  The survey is conducted in the spring, includes 763 stops and 

covers about 410 driven miles.  Visual estimates of crop type, tillage system, ephemeral 

erosion, and crop residue cover were made at approximately 100 feet into the field from the 

road at each stop on both sides of the road. This results in two field sampling points for most 

transect stops for a total of 1,161 sample observations. Transect points were excluded from 
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sampling if they were not in agricultural production. For the purposes of this survey 

agricultural production was categorized by crop, such as corn (Zea mays L.), soybean 

(Glycine max.), small grains, forage crops, and included other crops such as tobacco and 

vegetable crops as “other crops.” Transect points that were apparent to the observer as an 

agricultural field but that had no visible or emergent crop were categorized as idle if during 

a revisit on a later date no crop was observed.  

Data Pre-Processing 

The Cropland Roadside Survey data provided by Dane County Land and Water 

Resources Department covered 22 years from 1994 through 2017 with a gap in data 

collection in 2008 and 2009. These data are missing because staff were unavailable to 

conduct the survey in those 2 years. Crop category was inferred for 1993 by examining crop 

residue observed during data collection in the spring of 1994, expanding the crop dataset to 

23 years, but there are no tillage or residue values for 1993. The Cropland Roadside Survey 

was designed to observe fields after tillage and planting, but before crop canopy cover 

obscures the soil surface, typically mid- to late-May. The survey in Dane County was 

conducted by the same person during the entire time from 1994 to 2017.  

The original data were provided in .csv, .txt, and .dbf file formats for 1993 to 2007, 

while data from 2010 to 2013 were extracted from a WinTransect database. WinTransect was 

a custom user data collection interface and data analysis tool developed in 2008 for handling 

cropland roadside survey data by P. Kaarakka in the Department of Soil Science at the 

University of Wisconsin-Madison. The WinTransect software is no longer available and 

survey data for Dane County from 2010 to 2013 was only available as archived database 
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exports (P. Kaarakka, pers. commun., 31 Jan. 2021).  Data from 2014 to 2017 were provided 

as .snapDB files from the SnapPlus nutrient management software 

(https://snapplus.wisc.edu/) and is presently used to record and manage transect data (C. 

Diehl, pers. commun., 17 Jan. 2020). The .snapDB file format was based on the standard 

Structured Query Language (SQL) and data can be directly interacted with SQL command 

line instructions or a database browser. Notable changes in survey data collection are: 

1994 – Data collected included year, field, present crop, tillage, residue, previous crop, 

slope 

 

1995 – The following parameters were added: P factor, presence of ephemeral erosion, 

T level, K factor, slope length, drain out, if field present in a DNR priority watershed, 

soil loss estimates 

 

1996 – DOS Transect software adopted for data collection 

 

2000 – Wisconsin DATCP promotes statewide transect use 

 

2010 – WinTransect Software adopted for data collection; previous crop data dropped 

 

2014 – SnapPlus adopted for data collection 

Information gathered by the Cropland Roadside Survey were recorded for each field 

within a year. Crop type data were initially collected as eight different categories in 1994, 

but after adoption of WinTransect and SnapPlus, over 64 distinct crop categories were added 

to the dataset. These included different codifications of the same crops (e.g., soybean and 

corn) with various row planting widths, or the end use of a crop such as the use of corn for 

silage or grain. Crop residue cover recording was held consistent across all survey years as 

five distinct levels: 1 = 0 to 15% crop residue cover, 2 = 16 to 30% crop residue cover, 3 = 

31 to 50% crop residue cover, 4 = 51 to 75% crop residue cover, and 5 = 76 to 100% residue 

cover.  

https://snapplus.wisc.edu/
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Tillage systems were defined broadly by a distinction in crop residue cover and the 

specific level of soil disturbance according to the standards established by the CTIC (CTIC, 

2020; Hill, 1996). Tillage systems described by the Cropland Roadside Survey include no-

tillage, ridge-till, mulch-till, reduced-till, conventional-till, and moldboard plow tillage. 

These tillage systems in turn correspond to the broader categories as defined by crop residue 

cover: conventional tillage (< 15% crop residue cover), reduced tillage (15 to 30% crop 

residue cover) and conservation tillage (> 30% crop residue cover). Additional information 

about initial survey categories and attribute codes can be found in Chapter 1 and Hill (1996).  

The different data files formats for 1994 to 2007 were processed independently given 

their simple text document data structure and imported into an SQL database where the 

records for year, field, present crop, previous crop, residue, tillage, and ephemeral erosion 

were queried. These tables were then collated so that they represented one continuous 

dataset from 1993 to 2007. Both WinTransect and SnapPlus use a relational database 

structure. The exported WinTransect text files and SnapPlus data tables were imported into a 

SQL database where the relational databases were joined and queried to create a single 

dataset that contained the same attributes as the data structure for the 1994 to 2007 dataset. 

All crop and tillage data were then collated into a single dataset representing the period from 

1997 to 2017 with years 2008 and 2009 missing as previously mentioned. The combined 

dataset was then cleaned to remove duplicate entries, empty values, and invalid entries 

within the SQL database.  

Data Recoding 
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The combined database contained values that belonged to the same class but had 

different categories depending on the platform used to collect data. Classes were converted 

into a format that had the same categories for all the years in the database. For example, data 

from 1994 to 2007 used a one letter code for crop type and tillage system (Table 1), while 

data from SnapPlus used a three- or four-character code for each crop type. Common class 

values were assigned to crop type, for both present crop and previous crop, and tillage 

category. In addition, crop descriptors varied in the number of categories possible across the 

Transect, WinTransect, and SnapPlus platforms and required that crop categories be 

condensed homogenized into a format that contained five crop categories to span the entire 

dataset. The five categories used were corn, soybean, small grain and forage, idle, and other 

crops. The original crop attributes were maintained in the database for purposes of cross-

checking or future uses. 

The decision was made during database recoding process to include small grains and 

hay together in one category since they would appear similar at the time the survey was 

conducted in the spring and because the species or end use of the crop could not be validated 

with the available data. Within the Dane County Cropland Roadside Survey methodology, a 

field planted into a grain or hay crop in the same year as the survey year was recorded as 

small grains from 1994 to 2007 and as direct seeding or spring seeded in 2008 to 2017. 

Fields observed in the survey where it was apparent a small grain or forage crop was  

established the previous year were recorded as hay, alfalfa, or forage (C. Diehl, pers. 

commun., 17 Jan, 2020). This means that within a given survey year small grains could 

represent a wheat or barely grain crop, or it could represent a newly direct seeded hay field.  
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Table 1.  Crop and tillage recoding categories from the original 1994 Transect Survey 

Design. Original values from the survey data format were recoded from a letter 

code format to descriptive names. 

Crop categories 

Original values New value 

C  Corn 

B  Soybean 

F  Fallow 

H  Hay 

S Small grain 

G Small grain 

D  Drilled soybean 

R  Rowed soybean 

X  Other crop  

Z  CRP 

 

Tillage categories 

Original values New value 

C   Conventional 

M   Mulch till 

N   No till 

R   Ridge till 

X   Other 

/   NA 
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Therefore, the greatest level of confidence in land cover type was obtained by combining the 

small grains and forage crop categories as single attribute.  

Original data files also included slope, T factor, DNR priority watershed, and K factor 

variables that were derived from NRCS soil survey data using an analog overlay technique 

with printed National Agriculture Imagery Program orthophotographs. These attributes are 

incomplete as not all fields were assigned attributes with this method. Therefore, these 

attributes were not included in analyses within this study and are instead considered in 

Chapter 3, where geospatial analysis tools were used to populate an updated set of attributes 

describing each field.  

Roadside observations describing tillage systems were limited to estimates of crop 

residue cover and soil disturbance. However, in most cases the type of tillage equipment 

used or the degree of below surface soil disturbance could not be inferred. To address this 

uncertainty, tillage system was reclassified to present a binary condition of either no-tillage 

or tillage. Crop residue cover data were used to determine conservation, reduced, or 

conventional tillage system classifications. The no-tillage classification was used to identify 

the most conservative method of conservation tillage.  

Crop Classifications  

The previous crop attribute for a given season were collected between 1994 and 2007 

by inferring from the previous season crop residue remaining in a field at the time the survey 

was conducted in the spring. At the same time, current crop for a particular year was 

recorded if a crop had emerged and could be identified. This provided the opportunity for 

validating crop classifications in some situations. Similarly, crop residue present in a field 
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from the previous year can indicate if a second crop was planted. A new attribute for the 

occurrence of a second crop and its crop category was created. A detailed list of corrections 

and changes made as a result of this approach, along with justifications, can be found in 

Supplemental document 1. 

An established small grain or forage field will not have undergone tillage, and 

therefore there is no meaningful range in residue values to report. In these cases, established 

fields can be parsed from newly planted fields by filtering for the presence of tillage values. 

However, newly planted small grain or forage fields with no-tillage could be miss 

categorized using this approach since in both instances the soil is not disturbed by tillage and 

existing plant matter and root structures are maintained. Therefore, these two scenarios were 

assumed to be equivalent for purposes of this work. The data cleaning and recoding 

processes revealed a systematic data collection discrepancy in the WinTransect data. Small- 

grain-and-forage crops, along with idle fields, from 2010 to 2013 in the WinTransect dataset 

had abnormally high levels of crop residue cover (Fig. 1). In these instances, residue level 

was recorded as 5 (75 to 100% surface cover) with no observation for tillage recorded since 

there was no tillage and, as a result, these residue values appear to be anomalous. In the 

methodology for recording tillage and residue estimates utilized by Dane County Land and 

Water staff prior to WinTransect, these values would have been recorded as “NA” since 

tillage was not performed and no crop residue cover values were recorded. This includes the  
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Figure 1. (A) Percent of crop residue cover values in idle crop, and small grains and forage 

classes demonstrating WinTransect database error between 2010 and 2013, and (B) 

percent of crop residue cover values after database error was resolved.  

A 

B 



44 
 

majority of years with data recorded in the Transect and SnapPlus datasets (1994 to 2007 

and 2014 to 2017, respectively). The small grain and forage, and idle crop class attributes 

were processed through a conditional statement to assign NA values where tillage was also 

reported to be NA in the “small grain and forage” crop category and the “idle” crop  

category to resolve this discrepancy. This resulted in an update to 659 of 1,147 small grain 

and forage crop category entries, and 176 of 197 idle crop category entries in the 

WinTransect dataset. There was a small number of fields with residue and tillage values 

reported in both idle and small grain and forage categories. These are largely consistent 

across years which represented newly planted small grains or forage, or newly fallowed 

land. 

Current year crop classifications using emerged crops in the spring were validated with 

the residue from the previous crop observation the following year. Crop classification 

accuracy was calculated by comparing of the current crop category to the crop residue in-

field the following spring using a confusion matrix. The determination of a crop type from 

residue was assumed to be more robust than the visual classification of crop type by 

observing emerged plants in the spring since crop residue from matured and harvested plants 

is more distinctive from a distance than green shoots in the spring. The difficulty of using 

green shoot observations to determine current crop was compounded by variable planting 

dates and crop growth stages between fields during the survey period. 

Field Attrition Data 

Field attrition data describing the number of fields lost from the dataset by land 

conversion or field abandonment were derived from the dataset. Queries were used to call 
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the number of fields that had no data recorded beginning with 2016 and working 

successively backwards. The year 2017 was excluded from this range because there is no 

subsequent year to confirm a given field is out of agricultural land use from 2017. This 

approach provided a record of fields which were likely removed from agricultural 

production over time as defined by survey criteria.  

Statistical Analyses 

Descriptive and summary statistics for crop residue cover, crop type, and tillage were 

generated using JMP version 15 statistical analysis software (SAS Institute Inc., Cary NC). 

A rate change of crop type and residue cover level were analyzed by tabulating occurrences 

of each crop type and crop residue cover level. This table was exported to a spreadsheet 

where rate of change between each year was calculated for all crop categories and crop 

residue cover levels greater than 30% were aggregated to express the rate of change for 

conservation tillage. The rate of change in conservation tillage was then set against the rate 

of change of each crop category with linear regression. Statistical significance of the 

relationship between change in crop type and residue cover was determined at an α = 0.05.  

A confusion matrix was used to determine the overall accuracy of crop classifications 

by comparing the present crop classification for a given year to a reference value, in this 

case the previous crop reported for that same field the following spring. The confusion 

matrix represents data from 1994 to 2006. Previous crop data were not collected after 2006. 

Overall accuracy was calculated as the total correct classifications across all classes divided 

by the total number of classifications. 
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Results and Discussion 

Crop Classification and Field Attrition  

The Dane County Cropland Roadside Survey extends across the county over a length 

of 410 miles as driven, with 763 stops and 1,526 potential sample points. Of these, 1,161 

unique fields met survey criteria throughout the 22 years of sampling campaigns. This 

resulted in a total of 24,684 unique observations when crop data from 1993 is included. 

Accuracy assessment using a confusion matrix resulted in an overall 98% crop classification 

accuracy for corn, soybean, and idle crop values (Table 2). An accuracy assessment of small 

grain and forage and other crop categories was not possible using this methodology, as these 

crop categories could be explained by double cropping practices. 

Overall, there was a decline in the number of fields sampled each year and a total of 

127 fields lost throughout the duration of the survey. This decrease in total observations 

each year does not appear to be entirely explained by field attrition (Table 3). Rather the 

absence of an observation in a given year may reflect missing data or the field being 

temporarily removed from agricultural production (e.g., NRCS’s Conservation Reserve 

Program). The data as provided were insufficient to determine the cause of missing or non-

applicable data entries, or to parse between data points that were missing and those that were 

sampled but deemed to be non-applicable in a given year. Additionally, these data cannot be 

used to determine land conversion because the transect survey design intentionally avoided 

urban areas to avoid losing fields in the survey as a result of urban sprawl and land 

conversion. A description of the Cropland Roadside Survey design and criteria for sampling 

and gathering data can be found in Hill (1996) and Chapter 1.  

pma1
Highlight



47 
 

Table 2. Crop classification error summary with a confusion matrix for visual crop 

classification from roadside stops from 1994 to 2006.  Overall accuracy was 

estimated at 98%. Only cases where spring reported values are corn, soybean, or 

idle, are used for validation data. The other crop categories of small grains and 

forage and other crops could be explained as the result of double cropping. 

 

  Crop classification from spring residue 

Corn Soybean Idle Total 

 

Initial crop 

classification 

(present 

crop) 

Corn 6403 54 7 6464 

Soybean 78 2296 1 2375 

Idle 34 18 311 363 

Total 6515 2368 319 9202 
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Table 3. Number of fields sampled each year (N) and field attrition. Each year a field was 

surveyed if it met the criteria as an agricultural field. The annual change in the 

number of fields from one year to the next does not reflect field attrition, but 

mainly corresponded with fields that were temporarily removed from agriculture or 

where data were missing. Survey data for 1993 was inferred from crop residue in 

the spring of 1994 and is therefore excluded from the data. NA – not available. 

 

Year N Total attrition Magnitude of change 

1993 1056 NA NA 

1994 1130 0 0 

1995 1124 3 -3 

1996 1128 8 -5 

1997 1125 12 -4 

1998 1123 17 -5 

1999 1112 29 -12 

2000 1105 34 -5 

2001 1100 44 -10 

2002 1088 55 -11 

2003 1065 73 -18 

2004 1061 79 -6 

2005 1057 86 -7 

2006 1050 95 -9 

2007 1038 97 -2 

2010 1039 103 -6 

2011 1049 103 0 

2012 1048 107 -4 

2013 1045 111 -4 

2014 1044 115 -4 

2015 1037 122 -7 

2016 1033 127 -5 

2017 1027 NA NA 
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A      B 

 

 

 

 

 

 

 

 

 

  

 

Figure 2. Distribution of (A) crop category across all data years and (B) second crop 

category inferred from spring reported crop residue from 1994 to 2017 in Dane 

County, Wisconsin. 

 

 

  

Second crop category Count 

Corn 108 

Other crop 27 

Small grain and forage 129 

Soybean 21 

Total 285 
  

Crop category Count 

Corn 11726 

Idle 987 

Other crop 491 

Small grain and forage 7037 

Soybean 4443 

Total 24684 
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Crop Type Frequency Distribution and Double Cropping 

Across the surveyed fields and years, corn was the predominant crop where it was 

found 48% of the time (Fig. 2A). Small grain and forage crops category was found in 29% 

of the time, followed by soybean (18%). Idle and other crops represented a small proportion 

of the field during the survey period. Only 285 incidences of fields planted with a second 

crop were inferenced from the 14 survey years from 1994 to 2010 when this information 

was collected (Fig. 2B). These years with a reported second planting event include cases 

where a small grain crop was planted after a spring planting of soybean or corn, as well as 

cases where corn was planted after an early harvest of a small grain such as winter wheat. 

The most common second crop in a growing season was corn following small grains (n = 

100), followed in occurrence by small grain planted within a season after corn (n = 85). The 

next most frequent double cropping practice observed was small grains following soybean 

(n = 32) and soybean following small grains (n = 20).  Borchers et al. (2014) found that 

winter wheat was the most common crop to be planted in the same season as soybean, with a 

soybean-winter wheat rotation the most prevalent and rye was the most common winter crop 

species to be planted in combination with corn in northern U.S. latitudes. Growing two crops 

within a growing season was not a common practice during the survey period studied here. 

However, this may become more important as climate change drives an increase in growing 

season length and an increased potential for double and cover cropping (Borchers et al. 

2014; Seifert and Lobell, 2015; Lant et al., 2016). A fall survey in addition to recording 

previous crop residues during the spring survey would expand the utility of the dataset for 

cover crop and double crop monitoring in Dane County.  
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Crop Residue Cover and Crop Type 

A comparison of crop category and in-field crop residue cover revealed that soybean 

was most often planted into high levels of crop residue, with 61% of the observations 

planted into greater than 30% surface residue (Fig. 3A). Corn typically resulted in greater 

crop residue cover the following spring, with 36% of the observations having greater than 

30% surface residue and 20% of the total observations falling within the surface residue 

classification for reduced tillage of 15 to 30% (Fig. 3B). This was expected as corn residue 

takes longer to decompose than soybean and small grain crop residues (Kumar and Goh, 

1999; Hadas et al., 2004; Kriaučiuniene et al., 2012). However, there was a wide range in 

crop residue cover levels resulting from corn crops. This variation in crop residue levels in 

corn appear to be the result of different crop use between corn for silage and corn for grain. 

From 2010 to 2016, when observations were recorded to determine differences between corn 

for silage or grain, corn silage resulted in less than 15% surface residue cover in 81% of 

observations, and only 9% of corn silage instances resulted in conservation tillage levels of 

crop residue cover (> 30%). This compares to 55% of corn grain fields with conservation 

tillage levels of surface residue cover in the spring and 22% with levels within reduced 

tillage category for surface residue cover.  

Soybean increased in the proportion of crop categories observed from 1 year to the 

next between 1993 and 2001, rising from a low of 6% of all crops to 23% with relatively 

small changes from 2002 onward (Fig. 4). This increase in soybean frequency aligns with a 
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Figure 3. A) Percentage of each crop residue cover level in-field before a crop was planted, 

and (B) percentage of each residue level in-field after a crop was grown averaged 

from 1994 to 2017 in Dane County, Wisconsin. 
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Figure 4. Proportional distribution of crop category by year for all fields as a (A) percent of 

observations and (B) as a numerical count of observations. 

  

A 
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reduction in small grain and forage crops, and corn. Corn had the greatest reduction in its 

share of yearly crops during the period from 1993 to 1999, from a high of 58% in 1993 to 

44% by 1999, and after that corn fluctuated in a range between 44 and 51%. Like corn, 

small grains and forage crops had their high in 1993 with a 32% share of all crops planted 

that year, and from 2001 onward represented between 28.5 and 24% of total crops planted 

annually. The crop categories of idle and other crop had the lowest degree of variability in 

addition to representing the smallest proportion of overall field observations.  

The crop trends generated from the Cropland Roadside Survey data relate well with 

ARMS data estimates of corn and soybean crops for Dane County during the same period 

from 1994 to 2017 (NASS, 2021). Corn had a decrease in total acres from 1994 to 2000, 

while soybean increased in total acres during the same period, matching the trends seen in 

the Cropland Roadside Survey data (Fig. 5). Fluctuations in corn and soybean crop acres in 

the ARMS for Dane County after 2000 are also similar to the changes in the proportion of 

corn and soybean crops in the Cropland Roadside Survey. These similarities in trends occur 

despite that the ARMS data for Dane County reports total crop acres while the Cropland 

Roadside Survey primarily reports a count of fields for a given crop. These findings suggest 

that changes in frequency count of crops in the Cropland Roadside Survey are representative 

of general changes in crop acreage for Dane County.  

Crop Residue Cover Trends 

There was a general gradual increase in the proportion of crop surface residue levels of 

51% or greater over time (Fig. 6A). As previously mentioned, the percent surface crop 

residue cover observed in the spring can be related to the type of crop grown the previous  
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Figure 5.  Acres of corn and soybean crops from 1994-2017 obtained from National 

Agricultural Statistics Service ARMS data (NASS, 2021). 
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Figure 6. (A) Proportional distribution of surface crop residue cover categories and (B) 

occurrence of no-tillage by year in Dane County, Wisconsin. 
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year. However, no statistically significant relationship was found between the percent 

change in crop categories and percent change in crop residue cover greater than 30%. The 

percent change in crop residue cover over 30% was used for the regression as it represented 

the range of values where the most change was observed. This assessment quantitatively 

supports observations when comparing year on year changes in crop residue cover with 

changes in crop category (Fig. 6A and Fig. 4). These findings suggest that the overall 

increase in crop residue cover levels were the result of changes in agricultural conservation 

practices and not just a change in crop type. This observation is further supported by an 

increase of 17% in no-tillage, changing from 5% adoption in 1994 to 22% in 2017 (Fig. 6B).  

On a crop-by-crop basis, the trend of increasing crop surface residue cover was not 

uniform. However, the amount of surface residue cover following all crops generally 

increased over time. Soybean had the greatest increase in surface crop residue the following  

spring across the survey period (Fig. 7). Corn had a lower increase in surface residue cover 

over time than soybean, while small grain and forage had a modest increase. 

The amount of surface residue a particular crop was planted into increased over time 

for the three crop categories considered (Fig. 8). Soybean had the greatest increase in 

surface residue cover at the time of planting. This was somewhat expected since in 91% of 

cases soybean were preceded by corn the previous crop year. However, the most commonly 

planted crop after corn was corn (i.e., continuous corn) occurring 53% of the time, and 

soybean followed corn 35% of the time. The expected high surface residue levels following 

corn partially explains the high surface residue levels at the time of soybean planting. 

Nevertheless, surface residue levels after corn vary depending on crop usage. Between 2010  
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Figure 7. Annual proportion of surface residue the following spring after corn, soybean, and 

small grain and forage crop categories in Dane County, Wisconsin. 
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Figure 8. Annual proportion of surface residue cover that a particular corn, soybean, and 

small grain and forage crop was planted into in Dane County, Wisconsin. 

 

 

 

 

  



60 
 

and 2017, use of corn for grain resulted in conservation tillage surface residue levels in 55% 

of the observations, while residue levels after corn silage were in the conventional tillage 

range in 82% of the observations. Comparing surface residue levels after corn, corn grain 

was followed by no-tillage more frequently (26% of the time) than corn silage (10% of the 

time). This is noteworthy, as in addition to soybean crops almost always following corn, 

96% of soybean crops were planted into corn grain residue during the 2010 to 2017 period 

these data were recorded.  

These patterns were reflected in tillage practices between soybean and corn, where 

45% of soybean crops were planted as no-tillage compared to 15% for corn across all data 

years (Fig. 9). Additionally, adoption of no-tillage demonstrates that this disparity has grown 

consistently since 1994, with no-tillage adoption in soybean having a rapid increase from 12 

to 43% of crops with no-tillage by 2005 (Fig. 10). In contrast, there was an increase in no- 

tillage in corn to 20% in 2005 from a low of 7% in 1994. By 2017, no-tillage represented 

45% of all soybean crops, and 19% of all corn crops.  

Corn-soybean crop rotations are prevalent in the U.S. Corn Belt (Hill, 2001; Lyon et 

al., 2004) and represent the vast majority of 2-year crop rotations in the Cropland Roadside 

Survey dataset. Within these corn-soybean crop rotations, it is common for tillage practices 

to vary depending on the crop to be planted, where soybean tends to be no-tilled more 

frequently while corn is conventionally tilled (Hill, 1998, 2001; Wade and Claassen, 2017). 

The substantial difference between soybean and corn crop residue management was 

expected as developments in planting equipment, herbicide resistant cultivars, and favorable 

yield results from no-tillage in soybean are contrasted with mixed results in yields for no- 
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Figure 9.  Tillage conditions at planting for corn and soybean from 1994 to 2017 in Dane 

County, Wisconsin. 
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Figure 10. Annual proportion of no-tillage versus tilled fields in corn, soybean, and small 

grain and forage crops by year in Dane County, Wisconsin. 
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tilled corn in poorer drained soils and in northern, colder regions like Wisconsin (Hill, 2001; 

Lyon et al., 2004; Triplett and Dick, 2008; Duiker and Thomason, 2014). The pattern of 

conventional tillage corn and no-tilled soybean in rotation was likely an attempt to take 

advantage of these differing responses to no-tillage and optimize residue management in 

corn-soybean rotations (Hill, 2001; Lyon et al., 2004).  

The small but increasing trend in crop residue cover for corn in this dataset differs in 

part from the national trend described by Claassen et al. (2018) from ARMS data, where it 

was found that conservation tillage in corn, including no-tillage, saw an increase from 2002 

to 2006, but a general decline in total acres in following years. They also noted a similar 

pattern of growth followed by a modest decline for total acres of soybean planted in 

conservation tillage. Minnesota and Illinois have conducted state-wide Cropland Roadside 

Surveys. The Minnesota Cropland Roadside Survey reports their findings in acres, 

calculated as a proportion of total crop acres. Illinois reports its survey trends as proportions 

of sample point, which is similar to the Dane County Cropland Roadside Survey. Fischer 

and Moore (2008) describe the Minnesota Cropland Roadside Survey results, wherein they 

report an increase in conservation tillage from 18 to 35% of total acres from 1989 to 2007. 

In Illinois, there also was an increase in conservation tillage from 32 to 48% from 1994 to 

2018 (Illinois Dept. Agric., 2018). This growth in conservation tillage adoption in 

Minnesota and Illinois is consistent with Dane County, although the increase in conservation 

tillage in Dane County was greater in magnitude. The smaller increase in conservation 

tillage practice in Illinois may reflect an already high degree of practice in Illinois at the 

beginning of the survey (Hill, 2001). On a crop-by-crop basis, there was a rapid and sizable 
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increase in soybean with conservation tillage in Minnesota and Illinois. An increase in 

soybean acres in Minnesota was reported from 22% in 1989 to 56% in 2007 (Fischer and 

Moore, 2008). In Illinois, there was a rise in the proportion of soybean sample points with 

conservation tillage from 44% in 1994 to 70% in 2018 (Illinois Dept. Agric., 2018). 

Contrary to trends in Wisconsin and Illinois which reported increases, there was an overall 

decrease in corn with conservation tillage in Minnesota from 27 to 14%.  

Comparisons between the Dane County datasets, ARMS, and Cropland Roadside 

Surveys from other states were done to illustrate general trends in the region; however, 

comparing findings between regional and local scales can be problematic given differences 

in soil conditions, dominant agricultural production systems, and differences in sampling 

and survey designs. Wade et al. (2015) notes a high degree of region and crop specific 

variation in conservation tillage practice within the ARMS data. Further, Lyon et al. (2004) 

reported distinctly different measures of conservation tillage adoption and practice between 

regions using CRM data. Direct comparisons between different Cropland Roadside Survey 

datasets, such as between different counties or states, share similar difficulties to those 

present in direct comparisons between ARMS data and Cropland Roadside Survey data 

discussed in Chapter 1. However, the Cropland Roadside Survey datasets have a common 

survey design and so provide a more reasonable comparison than to ARMS data and may 

provide some insight into broader regional trends.   
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Conclusions 

Our findings demonstrate the potential value of robust, locally responsive data for 

describing and understanding trends and adoption of agricultural conservation practices. 

Results from analysis of these data connect increased crop residue cover to an increased 

adoption of conservation tillage practices, namely no-tillage. These changes were not 

uniform across crops, but were most pronounced in soybean, particularly following corn 

grain within corn-soybean rotations. Data analysis of previous and next year crop, tillage, 

and residue information was of particular value as it allowed for the evaluation of 

relationships from year to year, beyond simple crop and tillage summaries and year-on-year 

reports. These results demonstrate the type of specific questions conservationists and local 

organizers can answer with these data and how these data might be leveraged to address past 

and future crop and tillage data needs. Further work to develop a standard data structure for 

survey results is needed to reliably compare crop summaries and more detailed analyses 

between neighboring counties and broader regions. As demonstrated by this work, the result 

of such an effort would be a multi-scale dataset that allows for general summaries as well as 

detailed investigations of relationships between crop type, tillage, and residue management 

practices through time.  
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CHAPTER 3 

Augmenting the Value of Cropland Roadside Transect Survey Data Through Spatial 

Analysis and Derived Data Products 

Abstract 

The Cropland Roadside Survey provides valuable observations on crop and tillage 

practices throughout a county. However, there are opportunities to increase the value of 

these data and increase the efficiency of the time and labor costs of the survey. An analysis 

of crop rotation is presented, followed by statistical characterization of the relationships 

between field physical characteristics and crop and tillage practices. Finally, considerations 

for spatial analysis of survey data are explored. Monoculture cropping was the most 

common practice while corn (Zea mays L.)-soybean (Glycine max) systems were the most 

common 2-year crop rotation. These 2-year crop rotations saw a marked increase between 

1995 and 2001, displacing monocropping practices. Highly erodible land (HEL) soils had a 

significant relationship with crop type in all years, and with crop residue cover and field T-

level from 2010 to 2017. Overall, there was an increase in no-tillage operations on HEL 

soils. Delineation of field boundaries would greatly increase field-level data description, but 

there is a lack of quality sources for field boundaries.  
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Introduction 

The purpose of the Cropland Roadside Survey was principally to monitor crop residue 

management and tillage systems with the objective of providing information on the adoption 

of conservation tillage practices (Hill, 1996). In many instances, such as in Wisconsin and 

Illinois, the survey included the collection of field descriptive data such as K factor, slope, 

and slope length, and ephemeral erosion (DATCP, 1999; Illinois Dept. Agric., 2018). Hill 

(1996) describes the use of watershed identifiers so that data can be summarized at county 

and watershed scales. This broader record of attributes for each field allows for exploration 

of relationships between agricultural practices and the local characteristics where those 

practices were implemented. Developments in remote sensing technologies hold the 

potential to provide additional information on some crop and tillage practices at large scales 

(Zheng et al., 2014; Azzari et al., 2019; Waldner et al., 2019; Hagen et al., 2020). However, 

these technologies are dependent on ground truth data (Zheng et al., 2014; Begue et al., 

2018). Roadside surveys allow for direct observation of field conditions and agricultural 

practices that may be otherwise difficult to quantify. The Cropland Roadside Survey 

methodology is a versatile tool for building a statistically and spatially representative dataset 

at the field level (Dressing et al., 2017; Waldner et al., 2019).  

The primary challenges with ground surveys are the work hours and costs involved in 

data collection. Therefore, the objective of this work was to explore opportunities to 

improve the utility and value of the Cropland Roadside Survey in Dane County, Wisconsin 

for monitoring and assessing conservation agricultural practices. Several opportunities were 

pma1
Highlight



71 
 

explored, including trends in crop rotation, crop tenure, influence of the presence of highly 

erodible land (HEL) soil on conservation practices, and other landscape influenced 

properties.  

Materials and Methods 

Cropland Roadside Survey 

The Cropland Roadside Survey is a windshield transect survey developed in the 1990s 

and utilized by county conservation offices and by the CTIC’s Crop Residue Management 

Survey (Hill, 1996; Baker, 2011). Surveys were designed to sample agricultural fields at 

regular intervals along a predetermined road transect path.  The survey is conducted in the 

spring, includes 763 stops and covers about 410 driven miles.  Visual estimates of crop type, 

tillage system, ephemeral erosion, and crop residue cover were made at approximately 100 

feet into the field from the road and on both sides of the road for most stops. This results in 

two field sampling points for most transect stops for a total of 1,161 sample observations 

transect points were excluded from sampling if they were not in agricultural production. For 

the purposes of this survey, agricultural production was categorized by crop, such as corn 

(Zea mays L.), soybean (Glycine max), small grain, forage crops, and included other crops 

such as tobacco and vegetable crops as “other crops.” Transect points that were apparent to 

the observer as an agricultural field but that had no visible or emergent crop were 

categorized as idle if during a revisit on a later date no crop was observed.  
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Crop Rotation and Crop Tenure 

Crop rotation and tenure information was derived from the Dane County Roadside 

Survey data to provide a description of the number of years a single crop was planted 

consecutively in the same field year-on-year. These data provide a description of duration 

and species diversity of mono-cropping practice. The rotation of crops, particularly high 

residue crops, and the duration of mono-cropping are recognized as important factors 

affecting soil health and erosion risk (Duiker and Thomason, 2014; Claassen et al., 2018).   

Field, year, and crop type were queried from the survey data using SQL then grouped 

by field and ordered by year. This produced an ordered list of crops in chronological order 

for each field. A record of rotations and their duration for each field was generated from this 

list using the R statistical package. The resulting dataset was analyzed both as a standard 

table with variables in columns and attributes described in records and transposed using JMP 

15.0 statistical software (SAS Institute Inc., Cary NC) to provide a chronological table 

where each record represents an individual field and each variable across the table represents 

a year. This transposition method was also used with survey crop data to create a field tally 

table. The field tally table was used to generate counts and summaries for individual fields 

and aggregate statistics describing survey data on a field basis. 

Influence of Field Physical Attributes on Crop Practices and Survey Factors 

Conservation practices implemented on highly erodible land (HEL) provide highly 

effective mitigation of soil loss from erosion and, therefore, are a priority for the adoption of 

conservation practices. Other soil physical and geographic factors, such as distance to water 

and field size influence conservation practice adoption (Prokopy et al., 2019). Hence, 
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opportunities for characterization of soil properties and spatial relationships through field 

delineation and geospatial analysis were explored in this work.  

Soils Data – The USDA-Natural Resources Conservation Service’s Soil Survey 

Geographic Database (SSURGO) soil data for Dane County were downloaded using the Soil 

Data Development Toolbox in ArcMap. These data were converted into a gSSURGO format 

geodatabase. Soil maps for K factor, T factor, and representative slope were created using 

the create soil map tool in the Soil Data Development Toolbox. Wisconsin HEL soil map 

units were obtained from the Wisconsin NRCS website 

(https://www.nrcs.usda.gov/wps/portal/nrcs/main/wi/programs/farmbill/cc/ ). The SSURGO 

MUPolygon layer was then spatially joined with Cropland Roadside Survey transect points 

to assign a map unit key to each field. This key was then used to join the K factor, T factor, 

representative slope, and HEL data to the Cropland Roadside Survey transect points.  

Distance to Water – Lakes and ponds, and rivers and streams data layers were obtained 

from the Dane County open data portal (https://gis-countyofdane.opendata.arcgis.com/). The 

Near tool in the Proximity Toolset in ArcMap was used to determine the nearest water 

feature to each Cropland Roadside Survey transect point.  

Hydrologic Unit Code 10 and 12 – Hydrologic unit code (HUC) data layers for 12-

digit (HUC 12) and 10-digit (HUC 10) watershed boundaries were obtained from the 

Wisconsin Department of Natural Resources (WDNR) Open Data Portal (https://data-wi-

dnr.opendata.arcgis.com/). The HUC layers were then clipped in ArcMap to the WDNR 24k 

scale Dane County boundary layer to reduce data processing demand. The Cropland 

https://gis-countyofdane.opendata.arcgis.com/
https://data-wi-dnr.opendata.arcgis.com/
https://data-wi-dnr.opendata.arcgis.com/
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Roadside Survey transect point data layer were spatially joined with the HUC 10 and HUC 

12 layers in ArcMap to populate each field with a HUC 10 and HUC 12 attribute.  

Common Land Units (CLU) Selection to Define Field Boundaries of Surveyed Points 

All spatial products were derived using ArcMap version 10.8 software and all data 

layers were converted or transformed to the NAD 1983 (2011) Geographic Coordinate 

System and the Wisconsin Coordinate Reference Systems (WICRS) projection for Dane 

County (Wis. State Cartographers Office, 2009). For this work, CLU boundaries are 

considered as a potential source of field delineations for Cropland Roadside Survey transect 

points. Accuracy assessments were carried out to determine the suitability of CLU 

boundaries toward this purpose and to explore potential other uses of these geospatial data 

as described below. 

An ESRI point-shape file of Cropland Roadside Survey stop points and estimated in-

field observation locations was provided by the Dane County Land and Water Resource 

Department. These points were derived from GPS readings taken in 1996 at stops along the 

transect route and in-field locations were estimated as points at least 100 feet into the field 

based on roadside viewing angles and observer notes. Before using these points to develop 

spatial products, they were quality controlled by manual comparison to National Agriculture 

Imagery Program ortho-photographs from 2018 to ensure correct survey point placement 

when errors were identified. The spatial accuracy of the spatially differentiated GPS unit 

was at least 3 meters during initial collection of transect stop point coordinates.  National 

Agriculture Imagery Program (NAIP) imagery from 2018 for Dane County has a spatial 
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resolution of 0.6 m and allowed for digitization and correction of missing or erroneous point 

placements using feature editing in ArcMap 10.8.  

Farm Service Agency (FSA) CLU from 2008 were used as an approximation of 

individual agricultural field extents. This is the most current dataset because of the 

enactment in May 2008 of The Food, Conservation, and Energy Act of 2008, Title I - 

Commodity Programs, Subtitle F - Administration, Section 1619, which prohibits FSA from 

sharing geospatial data. These CLUs were identified by selecting polygons that contained an 

in-field transect sample point. In some cases, CLUs contained more than one in-field sample 

point. In these instances, the second sample point was removed. The CLU boundaries were 

then spatially joined with the Cropland Roadside Survey transect points to attribute each 

field with an acreage estimate using the Field Calculator in ArcMap 10.8 and to identify the 

selected CLUs by which field they represent from the survey dataset. A total of 1,082 of 

1,161 observed fields could be attributed CLU acreage data. 

Common Land Units (CLU) Accuracy Assessment 

A subset of 50 Cropland Roadside Survey in-field transect points were randomly 

selected in ArcMap. These 50 field locations were then manually digitized to create 

reference field boundaries using NAIP 2008 imagery at a fixed scale of 1:5,000. Field 

boundaries were identified and digitized using permanent features such as tree lines, roads, 

and fence lines and contained only one apparent crop type. This process mirrors that used 

when developing CLU boundaries (FSA, 2021). A total of 49 field locations were used for 

analysis; one location was removed as a result of land conversion to a residence since the 

original transect point was established. The Symmetrical Difference tool was then used to 



76 
 

identify how the reference field boundaries differed from the CLU boundaries that contained 

the same sample point. The difference in acres between the reference field boundaries and 

the CLU extents were quantified by subtracting the acres of each symmetrical difference 

polygon from the corresponding CLU acres. Therefore, a positive value indicates that the 

digitized area for a specific field was smaller than the CLU value, whereas a negative value 

indicates that the digitized field area was greater than the CLU area. The magnitude of 

difference as a percentage of field size was determined by dividing the absolute value of the 

difference in acres for a given field by the total acres of the reference field boundary for that 

field.  

Statistical Analysis 

One-way ANOVA and Pearson’s Chi-Squared tests were conducted using JMP 15 

statistical package to determine relationships between field physical characteristics and 

agricultural practices. In all cases, tests were conducted at an α of 0.05. Box plots were used 

to describe the distribution and central tendency for field physical characteristics and 

cropping and tillage practices.  

Results and Discussion 

Crop Rotations 

Overall mono-cropping was the most prevalent cropping pattern with 43% of all crop 

rotations. Within the mono-cropped rotation, corn accounted for 53% of the observations, 

followed by the small grain and forage category with 45%. Continuous corn accounted for 

26% and continuous small grain and forage for 22% of all crop observations for the entire 

survey period. Two-year crop rotations were the second most common rotation, representing 

pma1
Highlight
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37% of all crop rotations. Corn- and soybean-based rotations represented 73% of the 2-year 

rotations and accounted for 30% of all observed crops. Three-year crop rotations were the 

least common with only 3% of all crop rotations. Within 3-year crop rotations, instances of 

corn-soybeans/soybean-corn preceding or following small grains were more common than 

instances where corn and soybean were separated by a year of small grains.  

From 1995 to 2001, there was a rapid increase in the use of 2-year crop rotations, 

displacing mono crop systems. Two-year crop rotations increased from 25 to 44% during 

this period while the prevalence of mono-cropping decreased from 59 to 40%. This increase 

in 2-year rotations was the result of the adoption of corn-soybean based rotations (Fig. 1). 

After 2001, 2-year crop rotations and mono-cropping maintained a similar proportion of 

overall crop rotations with fluctuations in one typically mirrored by a reciprocal change in 

the other (Fig. 2). Three-year crop rotations were relatively unchanged, increasing from 1 to 

6% of crop rotations between 1993 and 2017.  

The dominance of corn-soybean based rotations was consistent with national trends 

between 1993 and 2001 (Hill, 2001; Lyon et al., 2004). The increase of corn and soybean in 

rotation also helps explain the general increase in soybean cropping and decrease in corn 

cropping observed in Dane County during this same period. The pairing of these two crops 

in a rotation would tend to bring their yearly proportions closer together. The general 

equilibrium after 2001 between mono-cropping (predominantly corn) and 2-year crop 

rotations may have been a response to rising corn prices and ethanol production between 

2001 and 2007 (Stern et al., 2012). Although the complex drivers that influence producer 

crop choice were beyond the scope of this work, the complexity inherent in agricultural  
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Figure 1.  Annual count of fields with a specific type of 2-year crop rotation in Dane 

County, Wisconsin. CS – corn/soybean; CX – corn/small grain and forage; SC –

soybean/corn; SX – soybean/small grain and forage; XC - small grain and forage 

/corn; XS - small grain and forage/soybean. 
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Figure 2.  Annual occurrence of mono-, 2-year, and 3-year crop rotations in fields surveyed 

by the Cropland Roadside Survey in Dane County, Wisconsin.  
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systems emphasizes the need for timely and reliable reporting on changes in cropping 

practices such as crop rotations.  

The development of crop rotation data expands the original scope of the Dane County 

Cropland Roadside Survey to better fit a more advanced understanding of conservation 

practices in agriculture (Duiker and Thomason, 2014; Reicosky, 2015). Increased diversity 

of crop rotations has been recognized for its potential to increase yields and manage pests in 

no-tillage systems (Triplett and Dick, 2008; Duiker and Thomason, 2014). Diverse crop 

rotations can further increase soil carbon capture and improve overall soil health (Claassen 

et al., 2018).  

Crop Tenure  

Crop tenure represents the number of consecutive years a single crop type was planted 

in the same field. Crop tenure was presented here as summary statistics describing crop 

tenure across all 1,162 fields for the years spanning 1993 to 2007. The 2-year disruption in 

data collection in 2008 and 2009 creates an artificial break in tenure counts, providing a 

maximum continuously observed crop tenure of 15 years (from 1993 through 2007). Across 

this 15-year period, small grain and forage crops had the greatest tenure with a mean of 3.1 

years followed by idle field conditions with a mean crop tenure of 2.75 years. Small grain 

and forage had the greatest range in crop tenure followed by idle field conditions (Fig. 3). 

Corn was observed to have a mean crop tenure of 1.9 years, and soybean with a mean tenure 

of 1 year. When crop tenure was counted continuously from 1993 to 2017 for mono-cropped 

fields but omitting the missing data years 2008 and 2009, a total of 66 fields were observed 

having more than 15 years of monoculture. In these fields with mono-cropping, it seems  
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Figure 3.  Years in a specific crop continuous tenure across all fields from 1993 to 2007 in 

Dane County, Wisconsin.  
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unlikely that the pattern of crop planted would have changed in the 2 years without 

observations. These 66 fields represent 5.6% of the total fields in the survey and consisted 

primarily of continuous small-grain and forage (n = 35) and continuous corn (n = 27). Data 

from 1993 to 2007 likely represent most crop tenure practices in addition to containing the 

majority of survey years. However, other sources of cropping information may be useful to 

fill in missing data from 2008 and 2009. For example, the National Crop Data Layer 

provides geospatial data on planted crops in Dane County beginning from 2008 onward and 

could be used to estimate field specific crop types in the missing data years. This approach 

may be of particular value for other cropland roadside surveys that only collected crop data 

periodically, such as the Illinois Tillage Transect Survey (Illinois Dept. Agric., 2018). 

Field Physical Attributes and Cropping Practices 

The relationship between HEL soils and crop management practices was explored 

using Chi-Square tests. Crop category had a statistically significant relationship with HEL 

soils in all years of the survey except for 2012. Tillage type (i.e., no-tillage versus tillage) 

had a statistically significant relationship with HEL soils from 2010 to 2015 and again in 

2017 (Table 1). Crop residue cover was significantly associated with HEL designated soils 

in 11 of 23 years of the survey data, primarily after 2010. These findings are consistent with 

the relationship between tillage type and HEL soils, given that no-tillage conditions were 

statistically significant and crop residue cover exceeding 60% is expected in a no-tillage 

system (CTIC, 2020). Additionally, an examination of the relationship between T-level and 

crop residue cover using an ANOVA test revealed statistical significance for these two  

  



83 
 

Table 1. Summary of statistical significance for Pearson’s Chi-Squared and One-Way 

ANOVA tests to compare various Cropland Roadside Survey parameters and 

derived field factors on an annual basis. Crop residue by HEL, crop category by 

HEL, and tillage by crop category were compared using Pearson’s Chi-Square test 

of independence, while all other results were determined using a One-Way 

ANOVA. Significant = statistically significant at P ≥ 0.05; NS = not statistically 

significant. 

 

  

 Year 

Crop 

residue 

by HEL 

Crop 

category 

by HEL 

Tillage 

by crop 

category 

T-level 

by 

residue 

cover 

K-factor 

by 

residue 

cover 

CLU 

acres by 

residue 

cover 

Distance 

to water 

by crop 

residue 

K-factor 

by crop 

category 

1993 NS Significant NS NS NS NS NS NS 

1994 NS Significant NS NS NS NS NS Significant 

1995 Significant Significant NS Significant NS NS NS Significant 

1996 NS Significant NS NS NS NS NS NS 

1997 NS Significant NS NS NS NS NS NS 

1998 NS Significant NS NS NS NS NS NS 

1999 NS Significant NS NS NS NS Significant NS 

2000 Significant Significant Significant NS NS NS Significant NS 

2001 Significant Significant NS NS NS NS NS NS 

2002 Significant Significant NS Significant NS NS NS NS 

2003 NS Significant NS NS NS NS NS NS 

2004 NS Significant NS Significant NS NS NS NS 

2005 Significant Significant NS NS NS NS Significant NS 

2006 NS Significant NS Significant NS Significant Significant NS 

2007 NS Significant NS NS NS NS NS NS 

2008 NS Significant NS NS NS NS NS NS 

2009 NS Significant NS NS NS NS NS NS 

2010 Significant Significant Significant Significant NS NS Significant NS 

2011 Significant Significant Significant Significant NS Significant NS NS 

2012 Significant NS Significant Significant NS NS Significant NS 

2013 Significant Significant Significant Significant NS NS NS NS 

2014 NS Significant Significant Significant Significant NS NS NS 

2015 Significant Significant Significant Significant NS NS NS Significant 

2016 NS Significant NS Significant NS NS NS Significant 

2017 Significant Significant Significant Significant NS NS NS NS 
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factors in 2010 to 2017. Distance to water, and k-factor had no consistent statistical 

relationship with crop or tillage practices.  

Fields representing HEL soils were planted into small grain and forage in greater 

proportion than into fields with non-HEL (NHEL) soils (Fig. 4). Corn and soybean were 

planted more frequently in soils classified as NHEL than HEL; however, this difference was 

less marked for soybean. These overall proportional differences were observed to be 

generally consistent through time between HEL and NHEL (Fig. 5), although for both land 

erodibility classifications there was a general increase of soybean planted as a proportion of 

total crops between 1994 and 2002 as noted in Chapter 2. Within HEL fields, there was an 

apparent decrease in the occurrence of small grain and forage crops and a rise in corn and 

soybean crops as a proportion of total crops over time. This was unexpected, as row 

cropping exposes HEL to a greater degree of erosion risk than perennial hay or forage crops. 

Interestingly there was an increase in no-tillage for all crops in both HEL and NHEL during 

the survey period (Fig. 6). This may presumably represent an increase in conservation 

practices in concurrence with an increase in row cropping on more vulnerable lands. 

Determining if the adoption of no-tillage has encouraged more row cropping of HEL is 

important for soil conservation as these soils are an area of priority for soil loss prevention. 

While the increase in row cropped HEL represents an increase in erosion potential, it may 

also demonstrate the influence of conservation compliance requirements for production on 

these soils (Wade et al., 2016; Wade and Claassen, 2017). Studies have found strong, 

positive, statistical relationships between HEL soil status and conservation tillage adoption 

(Wade et al. 2016; Wade and Claassen, 2017; Tran and Kurkalova, 2019). These results are  
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Figure 4.  Proportion of each crop category observed in highly erodible land (HEL) and non-

HEL (NHEL) classified soils for all years of the Cropland Roadside Survey in 

Dane County, Wisconsin.  
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Figure 5.  Annual proportion of each crop category observed in highly erodible land (HEL) 

and non-HEL (NHEL) classified soils in the Cropland Roadside Survey in Dane 

County, Wisconsin.  
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Figure 6. Annual percentage of fields with highly erodible land (HEL) and non-HEL 

(NHEL) soils with tilled and no-tilled conditions in Dane County, Wisconsin. 
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consistent with our findings using no-tillage and HEL soil classifications but differ from the 

inconsistent results with crop residue cover and HEL soil classification found in the Dane 

County survey data. 

Wade et al. (2016) make use of CTIC Residue Management Survey data aggregated to 

the county level with addition factors derived from soils and CDL data for their evaluation 

of conservation tillage adoption. These authors suggest that less aggregated field data would 

further enhance an understanding of conservation tillage adoption and increase the 

effectiveness and efficiency of incentive programs. The field level data presented in this 

work, derived from direct survey observations of soil surface and crop conditions, serve as a 

valuable source of locally specific data for utilization in empirical models. Field delineations 

provide the opportunity to increase the quality of soil data associated with each transect 

point, while also providing a measure of acreage for each field, as well as crop and tillage 

practices. The Cropland Roadside Survey design includes attributes for slope, slope length, 

K factor, and T factor for each transect point. When the Dane County Cropland Roadside 

Survey was established in 1994, an analog method of overlaying transparencies was utilized 

to attribute these soil characteristics to each transect point. The assumption of the Cropland 

Roadside Survey was that each transect point was a representative sample of the broader 

agricultural field that contains the transect point. This sampling method may be suitable 

where a phenomenon such as crop type, residue cover and tillage may be uniform over the 

extent of a field. However, soil properties demonstrate no loyalty to field boundaries and a 

given field may have a very high degree of spatial variability of its soil properties. 

Moreover, the degree of spatial variability of soil units and their attending soil properties can 
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differ significantly based on how a field is oriented in the landscape. Field delineation 

therefore provides a significantly greater quality of soil data and spatial characterization of 

each transect survey point. These spatial extents can also be utilized for extracting and 

attributing data from other sources such as raster datasets (Beeson et al., 2020). 

Analysis of Field Delineations  

The vast majority (81%) of CLUs in the accuracy testing subset represented an over 

estimation of actual field size (Fig. 7). The overall size of fields based on reference field 

boundaries was small, with a mean field size of 16 acres and a median of 9 acres. Field size 

estimated by CLU boundaries had a mean of 27.6 acres and a median of 16 acres (Fig. 8). 

The magnitude of difference between reference field boundaries and CLU-defined fields is 

relatively large, with a mean difference as a percentage of field size of 393%. In other 

words, mischaracterization of acreage was a factor of 3.93x on average and ranged from 

2126 to 3%. The median magnitude of difference was 94%. This finding suggests that CLU 

boundaries are poorly suited to determine representative acreage estimates for a farmed 

field. However, the purpose of the CLU boundaries is to assist in the administration of FSA 

arm records and federal Farm Bill programs. This means that CLU boundaries are digitized 

to represent farmsteads, woodlots, and supporting land in addition to cropland. Additionally, 

CLU boundaries are often based on information from the producers themselves that informs 

the digitization process for specific use cases.   

A more suitable application of these boundaries may be for validating remote sensing, 

where the spatial extent of the CLU can be used to validate multiple pixels in clusters. This  
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Figure 7. Difference between CLU acres and reference boundaries by field (Green) and a 

comparison of reference boundary estimated field size and CLU estimated field 

size. 
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Figure 8.  Distribution and central tendency of field size estimates for CLU and reference 

boundaries and absolute value difference between boundaries.  
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approach is used during the development of CDL data, where CLU boundaries are buffered 

30 to 15 meters from the edges and used for ground truthing crop classifications. Beeson et 

al. (2020) presented considerations for the use of CLU boundaries for crop residue estimates 

using remote sensing technologies, but ultimately chose to use a region growing approach 

using CDL data. Key issues presented by Beeson et al. (2020) for not using the CLU data 

were the lack of availability, potential for accuracy issues, and the need to utilize new 

boundaries over time as practices within a field may change.  

Advances in image segmentation and geographic object-based image analysis may 

provide a reliable and ready source of agricultural field delineations in the future (Li et al., 

2016; North et al., 2019; Kucharczyk et al., 2020), while the in-situ field observations  

Spatial Representation of the Cropland Roadside Survey  

The Cropland Roadside Survey was designed to provide estimates of crop and tillage 

practices at the county scale (Hill, 1996). Utilizing these survey data at different spatial 

scales requires accuracy metrics to maintain consistency between datasets on larger scales, 

and sufficient spatial representation at scales smaller than the county level.   

Baker (2011) used nationwide Cropland Roadside Survey data collected by the CTIC 

for their Crop Residue Management survey to generate a national dataset aggregated at the 

HUC8 watershed scale. In this approach, the goal was to characterize a larger population 

(the conterminous United States) from smaller subsamples (counties and watersheds). The 

primary challenge with this approach arises from the statistical uncertainty inherent in the 

Cropland Roadside Survey that can make comparisons and aggregations of different 

county’s surveys difficult. These challenges were discussed in Chapter 1. Another 
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consideration for use of the Cropland Roadside Survey is how well the survey represents 

cropland within the county. 

The sampling method of the Cropland Roadside Survey inherently limits sample sites 

to roadside positions where a clear line of sight can be established. Additionally, the survey 

route was designed to survey areas under predominantly agricultural practice, particularly 

where conservation tillage practices were concentrated. This necessitates avoiding 

developed areas and introduces a constraint within the county itself, wherein the survey 

samples agricultural land within the county as a separate class from the county extent. When 

county-level data were aggregated to a smaller spatial extent the original dataset was 

effectively subsampled. This process may introduce uncertainty if the new descriptive zones 

do not contain a sufficient number of sample points, may contain points from multiple 

surveys, and may not be representatively distributed (Fig. 9).  

Waldner et al. (2019) presents an evaluation of roadside survey methods for crop 

mapping. The authors concluded that roadside surveys had a similar representativeness and 

accuracy to random sampling and recommended a sampling density of one observation for 

every 30 to 40 hectares (~74 to 98 acres). The current Dane County survey design would 

provide an average of 1.6 observations per 1,000 acres within HUC 12 watersheds and an 

average of 1.5 observations per 1,000 acres within HUC 10 watersheds that contain at least 

one transect point. However, the acreage of individual watersheds includes all land uses and 

landforms while the Cropland Roadside Survey exclusively targets land in agricultural 

production, representing a smaller portion of the overall landscape (See HUC 12 and HUC 

10 insets of Fig. 9). This suggests that a redesign of sampling routes and survey point  
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Figure 9. Map of Dane County with transect survey points of the Cropland Roadside Survey. 

This figure overlays NASS National Cultivated Layer data with Hydrologic Unit 

Codes (HUC) 12 and 10 watershed boundaries (blue lines).  
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density may be necessary for the application of survey data for crop mapping and spatial 

analysis. Modification of the existing Cropland Roadside Survey to satisfy these 

requirements would require the addition of sampling points. This may subsequently increase 

the cost of the survey procedure, although the density of sampling points may be reduced in 

favor of a more evenly distributed route. However, these changes also stand to improve the 

quality of survey products and enables novel opportunities, such as assessing the 

relationship between landscape scale change in agriculture and ecosystem services (Koschke 

et al., 2013). 

Conclusions 

The Cropland Roadside Survey provides a valuable historic dataset capturing crop, 

tillage, and conservation tillage trends. The survey data can also be explored and analyzed in 

novel ways to address more contemporary questions and changing paradigms such as 

conservation agriculture and soil health, greatly expanding survey data applications beyond 

its initial design. The addition of ancillary data, particularly soil physical characteristics, 

further increases the potential specificity of survey data applications. Geospatial analysis is 

an efficient and effective way to attribute additional data to transect points while field 

delineations may greatly increase the scope of the added information. Lastly, with some 

modifications the Cropland Roadside Survey may provide a valuable spatial dataset, where 

existing and ancillary data can be used for crop mapping and for training and developing 

empirical and remote sensing models. These novel approaches present a path to creating 

value added products, offsetting the initial costs in time and funds to establish and conduct 

surveys. Further development of local scale crop and tillage surveys is important, as the 
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information these surveys provide informs our understanding of otherwise overlooked 

landscape scale processes. 
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Supplemental Document 1 

A comparison of present crop observations, those directly made of planted crops in the field, 

and the crop residue in the same field the following year allowed for inferences to be made 

about the presence of a second crop or to identify a classification error. Crop classifications 

for corn, soybean, and idle were determined when these crops were observed in both the 

present crop observation and when residue of that crop in the same field was observed the 

following year. If the crop residue in field the following year differed from the present crop 

observation it was assumed as either an incorrect classification or evidence of a second crop. 

Incorrect classifications were recorded for instances where difference full season row crops 

were observed for present crop and from crop residue the following spring. In these 

instances the crop determined from residue in the following year is assumed to be the correct 

crop type. This is because crop type is more easily distinguished from the mature plant 

residue than from recently planted crops when observations are made from the roadside 

vantage point. A second crop was recorded when the crop residue could be reasonably 

explained by a second crop, such as a fall planted small grain crop following harvest of 

spring planted corn.  Second crop values were then used to identify when a field was double 

cropped. A record of misclassification and second crop assignments is included here (Table 

1). 
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Table 1. Record of crop classification decisions for determining crop classification accuracy 

of corn, soybean, and idle crops and to inference a second crop.   

 

Present Crop 

directly 

observed in field 

Crop 

determined from 

residue the 

following spring 

Revised present 

crop value 

New second crop 

value Type of change 

Corn cover crop Corn Cover_Crop Second Crop 

Corn Hay Corn Hay Second Crop 

Corn Idle Idle NA Incorrect Classification 

Corn Other Crop Corn Other_Crop Second Crop 

Corn Small Grain Corn Small_Grain Second Crop 

Corn Soybeans Soybeans NA Incorrect Classification 

Drilled Soybeans Corn Corn NA Incorrect Classification 

Drilled Soybeans Hay Drilled_Soybeans Hay Second Crop 

Drilled Soybeans Other Crop Drilled_Soybeans Other_Crop Second Crop 

Drilled Soybeans Small Grain Drilled_Soybeans Small_Grain Second Crop 

Hay Corn Hay Corn Second Crop 

Hay cover crop Hay Cover_Crop Second Crop 

Hay Idle Idle NA Incorrect Classification 

Hay Other Crop Hay Other_Crop Second Crop 

Hay Small Grain Hay Small_Grain Second Crop 

Hay Soybeans Hay Soybeans Second Crop 

Idle Corn Corn NA Incorrect Classification 

Idle Hay Hay NA Incorrect Classification 

Idle Other Crop Other_Crop NA Incorrect Classification 

Idle Small Grain Small_Grain NA Incorrect Classification 

Idle Soybeans Soybeans NA Incorrect Classification 

NA Corn Corn NA Incorrect Classification 

NA Hay Hay NA Incorrect Classification 

NA Idle Idle NA Incorrect Classification 

NA Other Crop Other_Crop NA Incorrect Classification 

NA Small Grain Small_Grain NA Incorrect Classification 

NA Soybeans Soybeans NA Incorrect Classification 

Other Crop Corn Other_Crop Corn Second Crop 

Other Crop Hay Other_Crop Hay Second Crop 

Other Crop Idle Idle NA Incorrect Classification 

Other Crop Small Grain Other_Crop Small_Grain Second Crop 

Other Crop Soybeans Other_Crop Soybeans Second Crop 

Rowed Soybeans Corn Corn NA Incorrect Classification 

Rowed Soybeans Hay Rowed_Soybeans Hay Second Crop 

Rowed Soybeans Idle Idle NA Incorrect Classification 

Rowed Soybeans Small Grain Rowed_Soybeans Small_Grain Second Crop 

Small Grain Corn Small_Grain Corn Second Crop 

Small Grain Hay Small_Grain Hay Incorrect Classification 

Small Grain Idle Idle NA Incorrect Classification 

Small Grain Other Crop Small_Grain Other_Crop Second Crop 

Small Grain Soybeans Small_Grain Soybeans Second Crop 
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